Clifford Algebra Derivations of Tau-Functions for Two-Dimensional Integrable Models with Positive and Negative Flows
Symmetry, integrability and geometry: methods and applications, Tome 3 (2007) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We use a Grassmannian framework to define multi-component tau functions as expectation values of certain multi-component Fermi operators satisfying simple bilinear commutation relations on Clifford algebra. The tau functions contain both positive and negative flows and are shown to satisfy the $2n$-component KP hierarchy. The hierarchy equations can be formulated in terms of pseudo-differential equations for $n\times n$ matrix wave functions derived in terms of tau functions. These equations are cast in form of Sato–Wilson relations. A reduction process leads to the AKNS, two-component Camassa–Holm and Cecotti–Vafa models and the formalism provides simple formulas for their solutions.
Keywords: Clifford algebra; tau-functions; Kac–Moody algebras; loop groups; Camassa–Holm equation; Cecotti–Vafa equations; AKNS hierarchy.
@article{SIGMA_2007_3_a19,
     author = {Henrik Aratyn and Johan van de Leur},
     title = {Clifford {Algebra} {Derivations} of {Tau-Functions} for {Two-Dimensional} {Integrable} {Models} with {Positive} and {Negative} {Flows}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2007},
     volume = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a19/}
}
TY  - JOUR
AU  - Henrik Aratyn
AU  - Johan van de Leur
TI  - Clifford Algebra Derivations of Tau-Functions for Two-Dimensional Integrable Models with Positive and Negative Flows
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2007
VL  - 3
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a19/
LA  - en
ID  - SIGMA_2007_3_a19
ER  - 
%0 Journal Article
%A Henrik Aratyn
%A Johan van de Leur
%T Clifford Algebra Derivations of Tau-Functions for Two-Dimensional Integrable Models with Positive and Negative Flows
%J Symmetry, integrability and geometry: methods and applications
%D 2007
%V 3
%U http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a19/
%G en
%F SIGMA_2007_3_a19
Henrik Aratyn; Johan van de Leur. Clifford Algebra Derivations of Tau-Functions for Two-Dimensional Integrable Models with Positive and Negative Flows. Symmetry, integrability and geometry: methods and applications, Tome 3 (2007). http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a19/

[1] Aratyn H., Gomes J. F., Zimerman A. H., “Integrable hierarchy for multidimensional Toda equations and topological–anti-topological fusion”, J. Geom. Phys., 46 (2003), 21–47 ; Erratum J. Geom. Phys., 46 (2003), 201 ; hep-th/0107056 | DOI | MR | Zbl | DOI | MR

[2] Aratyn H., Gomes J. F., Zimerman A. H., “On negative flows of the AKNS hierarchy and a class of deformations of bihamiltonian structure of hydrodynamic type”, J. Phys. A: Math. Gen., 39 (2006), 1099–1114 ; nlin.SI/0507062 | DOI | MR | Zbl

[3] Cecotti S., Vafa C., “Topological–anti-topological fusion”, Nuclear Phys. B, 367 (1991), 359–461 | DOI | MR | Zbl

[4] Chen M., Liu S-Q., Zhang Y., “A 2-component generalization of the Camassa–Holm equation and its solutions”, Lett. Math. Phys., 75 (2006), 1–15 ; nlin.SI/0501028 | DOI | MR | Zbl

[5] Dubrovin B., “Geometry and integrability of topological-antitopological fusion”, Comm. Math. Phys., 152 (1993), 539–564 ; hep-th/9206037 | DOI | MR | Zbl

[6] Date E., Jimbo M., Kashiwara M., Miwa T., “Operator approach to the Kadomtsev–Petviashvili equation. Transformation groups for soliton equations. III”, J. Phys. Soc. Japan, 50 (1981), 3806–3812 | DOI | MR | Zbl

[7] Harnad J., Orlov A. Yu., “Fermionic construction of partition functions for two-matrix models and perturbative Schur function expansions”, J. Phys. A: Math. Gen., 39 (2006), 8783–8809 ; math-ph/0512056 | DOI | MR | Zbl

[8] Jimbo M., Miwa M., Miwa T., “Solitons and infinite dimensional Lie algebras”, Publ. RIMS, Kyoto Univ., 19 (1983), 943–1001 | DOI | MR | Zbl

[9] Kac V. G., van de Leur J. W., “The $n$-component $KP$ hierarchy and representation theory”, J. Math. Phys., 44 (2003), 3245–3293 ; hep-th/9308137 | DOI | MR | Zbl

[10] ten Kroode F., van de Leur J., “Bosonic and fermionic realizations of the affine algebra $\hat{gl}_n$”, Comm. Math. Phys., 137 (1991), 67–107 | DOI | MR | Zbl

[11] van de Leur J., “Twisted $GL_n$ loop group orbit and solutions of the WDVV equations”, Int. Math. Res. Not., 11 (2001), 551–574 ; nlin.SI/0004021 | MR

[12] van de Leur J. W., Martini R., “The construction of Frobenius manifolds from KP tau-functions”, Comm. Math. Phys., 205 (1999), 587–616 ; solv-int/9808008 | DOI | MR | Zbl

[13] Liu S-Q., Zhang Y., “Deformations of semisimple bihamiltonian structures of hydrodynamic type”, J. Geom. Phys., 54 (2005), 427–453 ; math.DG/0405146 | DOI | MR | Zbl

[14] Okounkov A., “Infinite wedge and random partitions”, Selecta Math. (N.S.), 7 (2001), 57–81 ; math.RT/9907127 | DOI | MR | Zbl

[15] Ueno K., Takasaki K., “Toda lattice hierarchy”, Adv. Stud. Pure Math., 4 (1984), 1–95 | MR | Zbl