@article{SIGMA_2007_3_a18,
author = {Valentyn Tychynin and Olga Petrova and Olesya Tertyshnyk},
title = {Nonlocal {Symmetries} and {Generation} of {Solutions} for {Partial} {Differential} {Equations}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2007},
volume = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a18/}
}
TY - JOUR AU - Valentyn Tychynin AU - Olga Petrova AU - Olesya Tertyshnyk TI - Nonlocal Symmetries and Generation of Solutions for Partial Differential Equations JO - Symmetry, integrability and geometry: methods and applications PY - 2007 VL - 3 UR - http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a18/ LA - en ID - SIGMA_2007_3_a18 ER -
%0 Journal Article %A Valentyn Tychynin %A Olga Petrova %A Olesya Tertyshnyk %T Nonlocal Symmetries and Generation of Solutions for Partial Differential Equations %J Symmetry, integrability and geometry: methods and applications %D 2007 %V 3 %U http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a18/ %G en %F SIGMA_2007_3_a18
Valentyn Tychynin; Olga Petrova; Olesya Tertyshnyk. Nonlocal Symmetries and Generation of Solutions for Partial Differential Equations. Symmetry, integrability and geometry: methods and applications, Tome 3 (2007). http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a18/
[1] Anco S. C., Bluman G., “Derivation of conservation laws from nonlocal symmetries of differential equations”, J. Math. Phys., 37 (1996), 2361–2375 | DOI | MR | Zbl
[2] Moitsheki R. J., Broadbridge P., Edwards M. P., “Systematic construction of hidden nonlocal symmetries for the inhomogeneous nonlinear diffusion equation”, J. Phys. A: Math. Gen., 37 (2004), 8279–8286 | DOI | MR | Zbl
[3] Galas F., “New nonlocal symmetries with pseudopotentials”, J. Phys. A: Math. Gen., 25 (1992), L981–L986 | DOI | MR | Zbl
[4] Papachristou C. J., Harrison K., “Nonlocal symmetries and Bäcklund transformations for the self-dual Yang–Mills system”, J. Math. Phys., 29 (1988), 238–243 | DOI | MR | Zbl
[5] Ibragimov N. H. (ed.), CRC Handbook of Lie group analysis of differential equations. Vol. 1. Symmetries, exact solutions and conservation laws, CRC Press, 1994 | MR | Zbl
[6] Olver P. J., Rosenau P., “The construction of special solutions to partial differential equations”, Phys. Lett. A, 114 (1986), 107–112 | DOI | MR | Zbl
[7] Olver P. J., Rosenau P., “Group-invariant solutions of differential equations”, SIAM J. Appl. Math., 47 (1987), 263–278 | DOI | MR | Zbl
[8] Fushchych W. I., Serov M. I., Tychynin V. A., Amerov T. K., “On nonlocal symmetry of nonlinear heat equation”, Proc. Acad. of Sci. Ukraine, 1992, no. 11, 27–33
[9] Krasil'shchik I. S., Vinogradov A. M., “Nonlocal trends in the geometry of differential equations: symmetries, conservation laws and Bäcklund transformations”, Acta Appl. Math., 15 (1989), 161–209 | DOI | MR
[10] Anderson R. L., Ibragimov N. H., Lie–Bäcklund transformations in applications, SIAM, Philadelphia, 1979 | MR
[11] Ibragimov N. H., Transformation groups applied to mathematical physics, Reidel, Dordrecht, 1985 | MR | Zbl
[12] Dzamay A. V., Vorob'ev E. M., “Infinitesimal weak symmetries of nonlinear differential equations in two independent variables”, J. Phys. A: Math. Gen., 27 (1994), 5541–5549 | DOI | MR
[13] Gandarias M. L., Bruzon M. S., “Symmetry analysis and solutions for a family of Cahn–Hillard equations”, Rep. Math. Phys., 46 (2000), 89–97 | DOI | MR | Zbl
[14] Clarkson P. A., Mansfield E. L., “Symmetry reduction and exact solutions of a class of nonlinear heat equations”, Phys. D, 70 (1993), 250–288 ; solv-int/9306002 | DOI | MR | MR
[15] Ibragimov N. H., Anderson R. L., “Lie–Bäcklund tangent transformations”, J. Math. Anal. Appl., 59 (1977), 145–162 | DOI | MR | Zbl
[16] Fok V. A., “Hydrogen atom and non-Euclidean geometry. Preliminary announcement”, Zs. Phys., 98 (1935), 145–154 | DOI
[17] Lowner C. A., A transformation theory of the partial differential equations of gas dynamics, Nat. Advis. Comm. Aeronat. Tech. Notes, no. 2065, Washington, 1950, 56 pp., ages
[18] Olver P. J., Applications of Lie groups to differential equations, Springer-Verlag, New York, 1993 | MR
[19] Guthrie G. A., “Recursion operators and nonlocal symmetries”, Proc. Roy. Soc. London A, 446 (1994), 107–114 | DOI | MR | Zbl
[20] Guthrie G. A., Hickman M. S., “Nonlocal symmetries of the KdV equation”, J. Math. Phys., 34 (1993), 193–205 | DOI | MR | Zbl
[21] Leo M., Leo R. A., Soliani G., Tempesta P., “On the relation between Lie symmetries and prolongation structures of nonlinear field equations”, Progr. Theoret. Phys., 105 (2001), 77–97 | DOI | MR | Zbl
[22] Olver P. J., Sanders J., Wang J.-P., “Ghost symmertries”, J. Nonlinear Math. Phys., 9, suppl. 1 (2002), 164–172 | DOI | MR
[23] Fushchich W. I., Serov N. I., “The conditional symmetry and reduction of the nonlinear heat conduction equation”, Proc. Acad. of Sci. Ukraine, Ser. A, 7 (1990), 24–27 | MR | Zbl
[24] Tychynin V. A., “Nonlocal symmetry and generating solutions for Harry–Dym type equations”, J. Phys. A: Math. Gen., 27 (1994), 2787–2797 | DOI | MR
[25] Pukhnachev V. V., “Nonlocal symmetries in nonlinear heat equations”, Energy Methods in Continuum Mechanics (Oviedo, 1994), Kluwer Acad. Publ., Dordrecht, 1996, 75–99 | MR
[26] Pukhnachev V. V., “Exact solutions of the hydrodynamic equations derived from partially invariant solutions”, J. Appl. Mech. Tech. Phys., 44 (2003), 317–323 | DOI | MR | Zbl
[27] Sophocleous C., “Transformation properties of variable-coefficient Burgers equation”, Chaos Solitons Fractals, 20 (2004), 1047–1057 | DOI | MR | Zbl
[28] Sophocleous C., “Further transformation properties of generalized inhomogeneous nonlinear diffusion equations with variable coefficients”, Phys. A, 345 (2005), 457–471
[29] Goard J. M., Broadbridge P., “Nonlinear superposition principles obtained by Lie symmetry methods”, J. Math. Anal. Appl., 214 (1997), 633–657 | DOI | MR | Zbl
[30] Jones S. E., Ames W. F., “Nonlinear superposition”, J. Math. Anal. Appl., 17 (1967), 484–487 | DOI | MR | Zbl
[31] Konopelchenko B. G., “On the general structure of nonlinear evolution equations and their Bäcklund transformations connected with the matrix non-stationary Schrödinger spectral problem”, J. Phys. A: Math. Gen., 15 (1982), 3425–3437 | DOI | MR | Zbl
[32] Rogers C., Shadwick W. F., Bäcklund transformations and their applications, Academic Press, New York, 1982 | MR
[33] Wahlquist H. D., Estabrook F. B., “Bäcklund transformation for solutions of the Korteweg–de Vries equation”, Phys. Rev. Lett., 31 (1973), 1386–1390 | DOI | MR
[34] Fushchych W. I., Tychynin V. A., “Generating of solutions for nonlinear equations by the Legendre transformation”, Proc. Acad. Sci. Ukraine, 7 (1992), 20–25 | MR
[35] Fairlie D. B., Mulvey J. A., “Integrable generalizations of the two-dimensional Born–Infeld equation”, J. Phys. A: Math. Gen., 27 (1994), 1317–1324 | DOI | MR | Zbl
[36] Kumei S., Bluman G. W., “When nonlinear differential equations are equivalent to linear differential equations”, SIAM J. Appl. Math., 42 (1982), 1157–1173 | DOI | MR | Zbl
[37] Ovsiannikov L. V., Group analysis of differential equations, Academic Press, 1982 | MR | Zbl
[38] Bluman G. W., Kumei S., Symmetries and differential equations, Springer, Berlin, 1989 | MR | Zbl
[39] Storm M. L., “Heat conduction in simple metals”, J. Appl. Phys., 22 (1951), 940–951 | DOI | MR | Zbl
[40] Bluman G., Kumei S., “On the remarkable nonlinear diffusion equation $(\partial/\partial x) [a(u+b)^{-2}(\partial u/\partial x)]-\partial u/\partial t=0$”, J. Math. Phys., 21 (1980), 1019–1023 | DOI | MR | Zbl