@article{SIGMA_2007_3_a17,
author = {Masahiro Imachi and Yasuhiko Shinno and Hiroshi Yoneyama},
title = {Lattice {Field} {Theory} with the {Sign} {Problem} and the {Maximum} {Entropy} {Method}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2007},
volume = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a17/}
}
TY - JOUR AU - Masahiro Imachi AU - Yasuhiko Shinno AU - Hiroshi Yoneyama TI - Lattice Field Theory with the Sign Problem and the Maximum Entropy Method JO - Symmetry, integrability and geometry: methods and applications PY - 2007 VL - 3 UR - http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a17/ LA - en ID - SIGMA_2007_3_a17 ER -
%0 Journal Article %A Masahiro Imachi %A Yasuhiko Shinno %A Hiroshi Yoneyama %T Lattice Field Theory with the Sign Problem and the Maximum Entropy Method %J Symmetry, integrability and geometry: methods and applications %D 2007 %V 3 %U http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a17/ %G en %F SIGMA_2007_3_a17
Masahiro Imachi; Yasuhiko Shinno; Hiroshi Yoneyama. Lattice Field Theory with the Sign Problem and the Maximum Entropy Method. Symmetry, integrability and geometry: methods and applications, Tome 3 (2007). http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a17/
[1] Bryan R. K., “Maximum entropy analysis of oversampled data problems”, Eur. Biophys. J., 18 (1990), 165–174 | DOI | MR
[2] Jarrell M., Gubernatis J. E., “Bayesian inference and the analytic continuation of imaginary-time quantum Monte Carlo data”, Phys. Rep., 269 (1996), 133–195 | DOI | MR
[3] Asakawa M., Hatsuda T., Nakahara Y., “Maximum entropy analysis of the spectral functions in lattice QCD”, Prog. Part. Nuclear Phys., 46 (2001), 459–508 ; hep-lat/0011040 | DOI
[4] Imachi M., Shinno Y., Yoneyama H., “Maximum entropy method approach to $\theta$ term”, Progr. Theoret. Phys., 111 (2004), 387–411 ; hep-lat/0309156 | DOI | Zbl
[5] Imachi M., Shinno Y., Yoneyama H., True or fictitious flattening?: MEM and the $\theta$ term, hep-lat/0506032
[6] Imachi M., Shinno Y., Yoneyama H., “Sign problem and MEM in lattice field theory with the $\theta$ term”, Progr. Theoret. Phys., 115 (2006), 931–949 ; hep-lat/0602009 | DOI | Zbl
[7] 't Hooft G., “Topology of the gauge condition and new confinement phases in non-Abelian gauge theories”, Nuclear Phys. B, 190 (1981), 455–478 | DOI | MR
[8] Cardy J. L., Rabinovici E., “Phase structure of $Z_p$ models in the presence of a $\theta$ parameter”, Nuclear Phys. B, 205 (1982), 1–16 | DOI | MR
[9] Cardy J. L., “Duality and the parameter in Abelian lattice models”, Nuclear Phys. B, 205 (1982), 17–26 | DOI | MR
[10] Seiberg N., “Topology in strong coupling”, Phys. Rev. Lett., 53 (1984), 637–640 | DOI | MR
[11] Bhanot G., Rabinovici E., Seiberg N., Woit P., “Lattice vacua”, Nuclear Phys. B, 230 (1984), 291–298 | DOI
[12] Wiese U.-J., “Numerical simulation of lattice $\theta$-vacua: the 2-d $U(1)$ gauge theory as a test case”, Nuclear Phys. B, 318 (1989), 153–175 | DOI
[13] Plefka J. C., Samuel S., “Monte Carlo studies of two-dimensional systems with a $\theta$ term”, Phys. Rev. D, 56 (1997), 44–54 ; hep-lat/9704016 | DOI
[14] Imachi M., Kanou S., Yoneyama H., “Two-dimensional CP$^2$ model with $\theta$ term and topological charge distributions”, Progr. Theoret. Phys., 102 (1999), 653–670 ; hep-lat/9905035 | DOI
[15] Hasenfratz P., Niedermayer F., “Perfect lattice action for asymptotically free theories”, Nuclear Phys. B, 414 (1994), 785–814 ; hep-lat/9308004 | DOI
[16] Burkhalter R., Imachi M., Shinno Y., Yoneyama H., “$CP^{N-1}$ models with $\theta$ term and fixed point action”, Progr. Theoret. Phys., 106 (2001), 613–640 ; hep-lat/0103016 | DOI