Lattice Field Theory with the Sign Problem and the Maximum Entropy Method
Symmetry, integrability and geometry: methods and applications, Tome 3 (2007) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Although numerical simulation in lattice field theory is one of the most effective tools to study non-perturbative properties of field theories, it faces serious obstacles coming from the sign problem in some theories such as finite density QCD and lattice field theory with the $\theta$ term. We reconsider this problem from the point of view of the maximum entropy method.
Keywords: lattice field theory; sign problem; maximum entropy method.
@article{SIGMA_2007_3_a17,
     author = {Masahiro Imachi and Yasuhiko Shinno and Hiroshi Yoneyama},
     title = {Lattice {Field} {Theory} with the {Sign} {Problem} and the {Maximum} {Entropy} {Method}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2007},
     volume = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a17/}
}
TY  - JOUR
AU  - Masahiro Imachi
AU  - Yasuhiko Shinno
AU  - Hiroshi Yoneyama
TI  - Lattice Field Theory with the Sign Problem and the Maximum Entropy Method
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2007
VL  - 3
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a17/
LA  - en
ID  - SIGMA_2007_3_a17
ER  - 
%0 Journal Article
%A Masahiro Imachi
%A Yasuhiko Shinno
%A Hiroshi Yoneyama
%T Lattice Field Theory with the Sign Problem and the Maximum Entropy Method
%J Symmetry, integrability and geometry: methods and applications
%D 2007
%V 3
%U http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a17/
%G en
%F SIGMA_2007_3_a17
Masahiro Imachi; Yasuhiko Shinno; Hiroshi Yoneyama. Lattice Field Theory with the Sign Problem and the Maximum Entropy Method. Symmetry, integrability and geometry: methods and applications, Tome 3 (2007). http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a17/

[1] Bryan R. K., “Maximum entropy analysis of oversampled data problems”, Eur. Biophys. J., 18 (1990), 165–174 | DOI | MR

[2] Jarrell M., Gubernatis J. E., “Bayesian inference and the analytic continuation of imaginary-time quantum Monte Carlo data”, Phys. Rep., 269 (1996), 133–195 | DOI | MR

[3] Asakawa M., Hatsuda T., Nakahara Y., “Maximum entropy analysis of the spectral functions in lattice QCD”, Prog. Part. Nuclear Phys., 46 (2001), 459–508 ; hep-lat/0011040 | DOI

[4] Imachi M., Shinno Y., Yoneyama H., “Maximum entropy method approach to $\theta$ term”, Progr. Theoret. Phys., 111 (2004), 387–411 ; hep-lat/0309156 | DOI | Zbl

[5] Imachi M., Shinno Y., Yoneyama H., True or fictitious flattening?: MEM and the $\theta$ term, hep-lat/0506032

[6] Imachi M., Shinno Y., Yoneyama H., “Sign problem and MEM in lattice field theory with the $\theta$ term”, Progr. Theoret. Phys., 115 (2006), 931–949 ; hep-lat/0602009 | DOI | Zbl

[7] 't Hooft G., “Topology of the gauge condition and new confinement phases in non-Abelian gauge theories”, Nuclear Phys. B, 190 (1981), 455–478 | DOI | MR

[8] Cardy J. L., Rabinovici E., “Phase structure of $Z_p$ models in the presence of a $\theta$ parameter”, Nuclear Phys. B, 205 (1982), 1–16 | DOI | MR

[9] Cardy J. L., “Duality and the parameter in Abelian lattice models”, Nuclear Phys. B, 205 (1982), 17–26 | DOI | MR

[10] Seiberg N., “Topology in strong coupling”, Phys. Rev. Lett., 53 (1984), 637–640 | DOI | MR

[11] Bhanot G., Rabinovici E., Seiberg N., Woit P., “Lattice vacua”, Nuclear Phys. B, 230 (1984), 291–298 | DOI

[12] Wiese U.-J., “Numerical simulation of lattice $\theta$-vacua: the 2-d $U(1)$ gauge theory as a test case”, Nuclear Phys. B, 318 (1989), 153–175 | DOI

[13] Plefka J. C., Samuel S., “Monte Carlo studies of two-dimensional systems with a $\theta$ term”, Phys. Rev. D, 56 (1997), 44–54 ; hep-lat/9704016 | DOI

[14] Imachi M., Kanou S., Yoneyama H., “Two-dimensional CP$^2$ model with $\theta$ term and topological charge distributions”, Progr. Theoret. Phys., 102 (1999), 653–670 ; hep-lat/9905035 | DOI

[15] Hasenfratz P., Niedermayer F., “Perfect lattice action for asymptotically free theories”, Nuclear Phys. B, 414 (1994), 785–814 ; hep-lat/9308004 | DOI

[16] Burkhalter R., Imachi M., Shinno Y., Yoneyama H., “$CP^{N-1}$ models with $\theta$ term and fixed point action”, Progr. Theoret. Phys., 106 (2001), 613–640 ; hep-lat/0103016 | DOI