An Analytic Formula for the $\mathrm A_2$ Jack Polynomials
Symmetry, integrability and geometry: methods and applications, Tome 3 (2007) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this letter I shall review my joint results with Vadim Kuznetsov and Evgeny Sklyanin [Indag. Math. 14 (2003), 451–482] on separation of variables (SoV) for the $A_n$ Jack polynomials. This approach originated from the work [RIMS Kokyuroku 919 (1995), 27–34] where the integral representations for the $A_2$ Jack polynomials was derived. Using special polynomial bases I shall obtain a more explicit expression for the $A_2$ Jack polynomials in terms of generalised hypergeometric functions.
Keywords: Jack polynomials; integral operators; hypergeometric functions.
@article{SIGMA_2007_3_a13,
     author = {Vladimir V. Mangazeev},
     title = {An {Analytic} {Formula} for the $\mathrm A_2$ {Jack} {Polynomials}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2007},
     volume = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a13/}
}
TY  - JOUR
AU  - Vladimir V. Mangazeev
TI  - An Analytic Formula for the $\mathrm A_2$ Jack Polynomials
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2007
VL  - 3
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a13/
LA  - en
ID  - SIGMA_2007_3_a13
ER  - 
%0 Journal Article
%A Vladimir V. Mangazeev
%T An Analytic Formula for the $\mathrm A_2$ Jack Polynomials
%J Symmetry, integrability and geometry: methods and applications
%D 2007
%V 3
%U http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a13/
%G en
%F SIGMA_2007_3_a13
Vladimir V. Mangazeev. An Analytic Formula for the $\mathrm A_2$ Jack Polynomials. Symmetry, integrability and geometry: methods and applications, Tome 3 (2007). http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a13/

[1] Calogero F., “Solution of a three-body problem in one dimension”, J. Math. Phys., 10 (1969), 2191–2196 | DOI | MR

[2] Erdélyi A. (ed.), Higher transcendental functions, Vol. I, McGraw-Hill Book Company, 1953

[3] Jack H., “A class of symmetric functions with a parameter”, Proc. Royal Soc. Edinburgh (A), 69 (1970), 1–18 | MR | Zbl

[4] Jing N. H., Józefiak T., “A formula for two-row Macdonald functions”, Duke Math. J., 67 (1992), 377–385 | DOI | MR | Zbl

[5] Koornwinder T. H., Sprinkhuizen-Kuyper I. G., “Generalized power series expansions for a class of orthogonal polynomials in two variables”, SIAM J. Math. Anal., 9 (1978), 457–483 | DOI | MR | Zbl

[6] Kuznetsov V. B., Mangazeev V. V., Sklyanin E. K., “$Q$-operator and factorized separation chain for Jack polynomials”, Indag. Math., 14 (2003), 451–482 ; math.CA/0306242 | DOI | MR | Zbl

[7] Kuznetsov V. B., Sklyanin E. K., “Separation of variables in the $A_2$ type Jack polynomials”, RIMS Kokyuroku, 919 (1995), 27–34 ; solv-int/9508002 | MR

[8] Kuznetsov V. B., Sklyanin E. K., “On Bäcklund transformations for many-body systems”, J. Phys. A: Math. Gen., 31 (1998), 2241–2251 ; solv-int/9711010 | DOI | MR | Zbl

[9] Kuznetsov V. B., Sklyanin E. K., “Factorisation of Macdonald polynomials”, Symmetries and Integrability of Difference Equations, Lecture Note Series, 255, London Math. Society, Cambridge University Press, 1999, 370–384 ; q-alg/9703013 | MR | Zbl

[10] Kuznetsov V. B., Sklyanin E. K., “Separation of variables and integral relations for special functions”, The Ramanujan J., 3 (1999), 5–35 ; q-alg/9705006 | DOI | MR | Zbl

[11] Lassalle M., “Explicitation des polynômes de Jack et de Macdonald en longueur trois”, C. R. Acad. Sci. Paris Ser. I Math., 333 (2001), 505–508 | MR | Zbl

[12] Lassalle M., Schlosser M., “Inversion of the Pieri formula for Macdonald polynomials”, Adv. Math., 202 (2006), 289–325 ; math.CO/0402127 | DOI | MR | Zbl

[13] Macdonald I. G., Symmetric functions and Hall polynomials, 2nd ed., Oxford University Press, Oxford, 1995 | MR | Zbl

[14] Olshanetsky M. A., Perelomov A. M., “Quantum integrable systems related to Lie algebras”, Phys. Rep., 94 (1983), 313–404 | DOI | MR

[15] Perelomov A. M., Ragoucy E., Zaugg P., “Explicit solution of the quantum three-body Calogero–Sutherland model”, J. Phys. A: Math. Gen., 31 (1998), L559–L565 ; hep-th/9805149 | DOI | MR | Zbl

[16] Oshima T., Sekiguchi H., “Commuting families of differential operators invariant under the action of a Weyl group”, J. Math. Sci. Univ. Tokyo, 2 (1995), 1–75 | MR | Zbl

[17] Sklyanin E. K., “Quantum inverse scattering method. Selected topics”, Quantum Group and Quantum Integrable Systems, Nankai Lectures in Mathematical Physics, ed. M.-L. Ge, World Scientific, Singapore, 1992, 63–97 ; hep-th/9211111 | MR

[18] Sklyanin E. K., “Separation of variables. New trends”, Progr. Theoret. Phys. Suppl., 118 (1995), 35–60 ; solv-int/9504001 | DOI | MR | Zbl

[19] Slater L. J., Generalized hypergeometric functions, Cambridge University Press, 1966 | MR | Zbl

[20] Stanley R. P., “Some combinatorial properties of Jack symmetric functions”, Adv. Math., 77 (1989), 76–115 | DOI | MR | Zbl

[21] Sutherland B., “Quantum many-body problem in one dimension. I, II”, J. Math. Phys., 12 (1971), 246–250 ; 251–256 | DOI

[22] Watson G. N., “The product of two hypergeometric functions”, Proc. London Math. Soc. (2), 20 (1922), 191–195 | DOI