WKB Approximation in Noncommutative Gravity
Symmetry, integrability and geometry: methods and applications, Tome 3 (2007) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the quasi-commutative approximation to a noncommutative geometry defined as a generalization of the moving frame formalism. The relation which exists between noncommutativity and geometry is used to study the properties of the high-frequency waves on the flat background.
Keywords: noncommutative geometry; models of quantum gravity.
@article{SIGMA_2007_3_a124,
     author = {Maja Buric and John Madore and George Zoupanos},
     title = {WKB {Approximation} in {Noncommutative} {Gravity}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2007},
     volume = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a124/}
}
TY  - JOUR
AU  - Maja Buric
AU  - John Madore
AU  - George Zoupanos
TI  - WKB Approximation in Noncommutative Gravity
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2007
VL  - 3
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a124/
LA  - en
ID  - SIGMA_2007_3_a124
ER  - 
%0 Journal Article
%A Maja Buric
%A John Madore
%A George Zoupanos
%T WKB Approximation in Noncommutative Gravity
%J Symmetry, integrability and geometry: methods and applications
%D 2007
%V 3
%U http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a124/
%G en
%F SIGMA_2007_3_a124
Maja Buric; John Madore; George Zoupanos. WKB Approximation in Noncommutative Gravity. Symmetry, integrability and geometry: methods and applications, Tome 3 (2007). http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a124/

[1] Madore J., An introduction to noncommutative differential geometry and its physical applications, 2nd ed., London Mathematical Society Lecture Note Series, 257, Cambridge University Press, 2000 | MR

[2] Burić M., Madore J., “A dynamical 2-dimensional fuzzy space”, Phys. Lett. B, 622 (2005), 183–191 ; hep-th/0507064 | DOI | MR

[3] Burić M., Grammatikopoulos T., Madore J., Zoupanos G., “Gravity and the structure of noncommutative algebras”, J. High Energy Phys., 2006:04 (2006), 054, 17 pp., ages ; hep-th/0603044 | DOI | MR

[4] Sahni V., Starobinsky A., “Reconstructing dark energy”, Internat. J. Modern Phys. D, 15 (2006), 2105–2132 ; astro-ph/0610026 | DOI | MR | Zbl

[5] Cardella M. A., Zanon D.,, “Noncommutative deformation of four dimensional Einstein gravity”, Classical Quantum Gravity, 20 (2003), L95–L104 ; hep-th/0212071 | DOI | MR

[6] Garcia-Compean H., Obregon O., Ramirez C., Sabido M., “Noncommutative self-dual gravity”, Phys. Rev. D, 68 (2003), 044015, 8 pp., ages ; hep-th/0302180 | DOI | MR

[7] Aschieri P., Blohmann C., Dimitrijevic M., Meyer F., Schupp P., Wess J., “A gravity theory on noncommutative spaces”, Classical Quantum Gravity, 22 (2005), 3511–3532 ; hep-th/0504183 | DOI | MR | Zbl

[8] Aschieri P., Dimitrijevic M., Meyer F., Wess J., “Noncommutative geometry and gravity”, Classical Quantum Gravity, 23 (2006), 1883–1912 ; hep-th/0510059 | DOI | MR