@article{SIGMA_2007_3_a123,
author = {M. A. Gonz\'alez Le\'on and J. Mateos Guilarte and M. de la Torre Mayado},
title = {Two-Dimensional {Supersymmetric} {Quantum} {Mechanics:} {Two} {Fixed} {Centers} of {Force}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2007},
volume = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a123/}
}
TY - JOUR AU - M. A. González León AU - J. Mateos Guilarte AU - M. de la Torre Mayado TI - Two-Dimensional Supersymmetric Quantum Mechanics: Two Fixed Centers of Force JO - Symmetry, integrability and geometry: methods and applications PY - 2007 VL - 3 UR - http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a123/ LA - en ID - SIGMA_2007_3_a123 ER -
%0 Journal Article %A M. A. González León %A J. Mateos Guilarte %A M. de la Torre Mayado %T Two-Dimensional Supersymmetric Quantum Mechanics: Two Fixed Centers of Force %J Symmetry, integrability and geometry: methods and applications %D 2007 %V 3 %U http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a123/ %G en %F SIGMA_2007_3_a123
M. A. González León; J. Mateos Guilarte; M. de la Torre Mayado. Two-Dimensional Supersymmetric Quantum Mechanics: Two Fixed Centers of Force. Symmetry, integrability and geometry: methods and applications, Tome 3 (2007). http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a123/
[1] Witten E., “Dynamical breaking of supersymmetry”, Nuclear Phys. B, 188 (1981), 513–554 | DOI
[2] Witten E., “Constraints on supersymmetry breaking”, Nuclear Phys. B, 202 (1982), 253–316 | DOI | MR
[3] Witten E., “Supersymmetry and Morse theory”, J. Differential Geom., 17 (1982), 661–692 | MR | Zbl
[4] Clifford W. K., Mathematical papers, ed. R. Tucker, Macmillan Co, London, 1882 | MR
[5] Hitchin N., The Dirac operator, Oxford University Press, Oxford, 2002 | MR | Zbl
[6] Hull T., Infeld L., “The factorization method”, Rev. Modern Phys., 23 (1951), 21–68 | DOI | MR | Zbl
[7] Casalbuoni R., “The classical mechanics for Bose–Fermi systems”, Nuovo Cim. A, 33 (1976), 389–431 | DOI | MR
[8] Berezin F. A., Marinov M., “Particle spin dynamics as the Grassmann variant of classical mechanics”, Ann. Phys., 104 (1977), 336–362 | DOI | Zbl
[9] Cooper F., Khare A., Sukhatme U., “Supersymmetry and quantum mechanics”, Phys. Rep., 251 (1995), 267–385 ; hep-th/9405029 | DOI | MR
[10] Junker G., Supersymmetric methods in quantum and statistical physics, Springer, Berlin, 1996 | MR
[11] González León M. A., Mateos Guilarte J., de la Torre M., “From $N=2$ supersymmetric classical to quantum mechanics and back: the SUSY WKB approximation”, Monografías de la Real Academia de Ciencias de Zaragoza, 29 (2006), 113–122 ; hep-th/0603225 | MR
[12] Andrianov A. A., Borisov N., Eides M., Ioffe M. V., “Supersymmetric origin of equivalent quantum systems”, Phys. Lett. A, 109 (1985), 143–148 | DOI | MR
[13] Andrianov A. A., Borisov. N., Eides M., Ioffe M. V., “Supersymmetric mechanics: a new look at the equivalence of quantum systems”, Theor. Math. Phys., 61 (1984), 965–972 | DOI | MR
[14] Andrianov A. A., Borisov N., Ioffe M. V., “The factorization method and quantum systems with equivalent energy spectra”, Phys. Lett. A, 105 (1984), 19–22 | DOI | MR
[15] Andrianov A. A., Borisov N., Ioffe M. V., “Factorization method and the Darboux transformation for multidimensional Hamiltonians”, Theor. Math. Phys., 61 (1984), 1078–1088 | DOI | MR
[16] Perelomov A., Integrable systems of classical mechanics and Lie algebras, Birkhäuser, 1992
[17] Alonso Izquierdo A., González León M. A., Mateos Guilarte J., “Invariants in supersymmetric classical mechanics”, Monografías de la Real Sociedad Españ ola de Matemáticas, 2 (2001), 15–28 ; hep-th/0004053 | MR | Zbl
[18] Alonso Izquierdo A., González León M. A., Mateos Guilarte J., de la Torre M., “Supersymmetry versus integrability in two-dimensional classical mechanics”, Ann. Phys., 308 (2003), 664–691 ; hep-th/0307123 | DOI | MR | Zbl
[19] Alonso Izquierdo A., González León M. A., Mateos Guilarte J., de la Torre Mayado M., “On two-dimensional superpotentials: from classical Hamilton–Jacobi theory to 2D supersymmetric quantum mechanics”, J. Phys. A: Math. Gen., 37 (2004), 10323–10338 ; hep-th/0401054 | DOI | MR | Zbl
[20] Andrianov A. A., Ioffe M. V., Nishnianidze D. N., “Classical integrable 2-dim models inspired by SUSY quantum mechanics”, J. Phys. A: Math. Gen., 32 (1999), 4641–4654 ; solv-int/9810006 | DOI | MR | Zbl
[21] Cannata F., Ioffe M. V., Nishnianidze D. N., “New methods for two-dimensional Schrödinger equation: SUSY-separation of variables and shape-invariance”, J. Phys. A: Math. Gen., 35 (2002), 1389–1404 ; hep-th/0201080 | DOI | MR | Zbl
[22] Cannata F., Ioffe M. V., Nishnianidze D. N., “Two-dimensional SUSY-pseudo-hermiticity without separation of variables”, Phys. Lett. A, 310 (2003), 344–352 ; hep-th/0302003 | DOI | MR | Zbl
[23] Ioffe M. V., “SUSY-approach for investigation of two-dimensional quantum mechanical systems”, J. Phys. A: Math. Gen., 37 (2004), 10363–10374 ; hep-th/0405241 | DOI | MR | Zbl
[24] Ioffe M. V., Mateos Guilarte J., Valinevich P., “Two-dimensional supersymmetry: from SUSY quantum mechanics to integrable classical models”, Ann. Phys., 321 (2006), 2552–2565 ; hep-th/0603006 | DOI | MR | Zbl
[25] Ioffe M. V., Mateos Guilarte J., Valinevich P., “A class of partially solvable two-dimensional quantum models with periodic potentials”, Nuclear Phys. B, 790 (2008), 414–431 ; arXiv:0706.1344 | DOI | MR | Zbl
[26] Cannata F., Ioffe M. V., Nishnianidze D. N., “Exactly solvable two-dimensional complex model with real spectrum”, Theor. Math. Phys., 148 (2006), 960–967 ; hep-th/0512110 | DOI | MR | Zbl
[27] Ioffe M. V., Nishnianidze D. N., “Exact solvability of two-dimensional real singular Morse potential”, Phys. Rev. A, 76 (2007), 052114, 5 pp., ages ; arXiv:0709.2960 | DOI | MR
[28] Bondar D., Hnatich M., Lazur V., “Two-dimensional problem of two Coulomb centers at small intercenter distances”, Theor. Math. Phys., 148 (2006), 1100–1116 | DOI | MR | Zbl
[29] Mielnik B., “Factorization method and new potentials with the oscillator spectrum”, J. Math. Phys., 25 (1984), 3387–3389 | DOI | MR | Zbl
[30] Abramowitz M., Stegun I. A., Handbook of mathematical functions, Dover Publ., 1972
[31] Byrd P. F., Friedman M. D., Handbook of elliptic integrals for engineers and scientists, Springer-Verlag, 1971 | MR | Zbl
[32] Finkel F., González-López A., Rodríguez M. A., “On the families of orthogonal polynomials associated to the Razavy potential”, J. Phys. A: Math. Gen., 32 (1999), 6821–6835 ; math-ph/9905020 | DOI | MR | Zbl
[33] Greiner W., Relativistic quantum mechanics. Wave equations, Springer-Verlag, 1997 | MR | Zbl
[34] Heumann R., “The classical supersymmetric Coulomb problem”, J. Phys. A: Math. Phys., 35 (2002), 7437–7460 ; hep-th/0205232 | DOI | MR | Zbl
[35] Ince E. L., Ordinary differential equations, Dover, 1956 | MR
[36] Andrianov A. A., Ioffe M. V., Tsu C.-P., “Factorization method in curvilinear coordinates and levels pairing for matrix potentials”, Vestnik Leningradskogo Universiteta (Ser. 4 Fiz. Chim.), 25 (1988), 3–9 (in Russian) | MR
[37] González-López A., Kamran N., “The multidimensional Darboux transformation”, J. Geom. Phys., 26 (1998), 202–226 ; hep-th/9612100 | DOI | MR | Zbl
[38] Kirchberg A., Länge J. D., Pisani P. A. G., Wipf A., “Algebraic solution of the supersymmetric hydrogen atom in $d$ dimensions”, Ann. Phys., 303 (2003), 359–388 ; hep-th/0208228 | DOI | MR | Zbl
[39] Wipf A., Kirchberg A., Länge J. D., “Algebraic solution of the supersymmetric hydrogen atom”, Bulgar. J. Phys., 33, 2006, 206–216, Proceedings of the 4th International Symposium “Quantum Theory and Symmetries” (QTS-4) (August 15–21, 2005, Varna, Bulgaria) ; hep-th/0511231 | MR | Zbl
[40] Landau L. D., Lifshitz E. M., Mechanics, Pergamon Press, 1985 | MR
[41] Manton N., Heumann R., “Classical supersymmetric mechanics”, Ann. Phys., 284 (2000), 52–88 ; hep-th/0001155 | DOI | MR | Zbl
[42] Pauling L., Bright Wilson E., Introduction to quantum mechanics with applications to chemistry, Dover, 1963 | MR
[43] Razavy M., “An exactly soluble Schrödinger equation with a bistable potential”, Amer. J. Phys., 48 (1980), 285–288 | DOI
[44] Razavy M., “A potential model for torsional vibrations of molecules”, Phys. Lett. A, 82 (1981), 7–9 | DOI
[45] Correa F., Plyushchay M., “Hidden supersymmetry in quantum bosonic systems”, Ann. Phys., 322 (2007), 2493–2500 ; hep-th/0605104 | DOI | MR | Zbl