Integrability and Diffeomorphisms on Target Space
Symmetry, integrability and geometry: methods and applications, Tome 3 (2007) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We briefly review the concepts of generalized zero curvature conditions and integrability in higher dimensions, where integrability in this context is related to the existence of infinitely many conservation laws. Under certain assumptions, it turns out that these conservation laws are, in fact, generated by a class of geometric target space transformations, namely the volume-preserving diffeomorphisms. We classify the possible conservation laws of field theories for the case of a three-dimensional target space. Further, we discuss some explicit examples.
Keywords: integrability; zero curvature; conservation laws; nonlinear field theories.
@article{SIGMA_2007_3_a122,
     author = {Christoph Adam and Joaquin Sanchez-Guillen and Andrzej Wereszczynski},
     title = {Integrability and {Diffeomorphisms} on {Target} {Space}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2007},
     volume = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a122/}
}
TY  - JOUR
AU  - Christoph Adam
AU  - Joaquin Sanchez-Guillen
AU  - Andrzej Wereszczynski
TI  - Integrability and Diffeomorphisms on Target Space
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2007
VL  - 3
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a122/
LA  - en
ID  - SIGMA_2007_3_a122
ER  - 
%0 Journal Article
%A Christoph Adam
%A Joaquin Sanchez-Guillen
%A Andrzej Wereszczynski
%T Integrability and Diffeomorphisms on Target Space
%J Symmetry, integrability and geometry: methods and applications
%D 2007
%V 3
%U http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a122/
%G en
%F SIGMA_2007_3_a122
Christoph Adam; Joaquin Sanchez-Guillen; Andrzej Wereszczynski. Integrability and Diffeomorphisms on Target Space. Symmetry, integrability and geometry: methods and applications, Tome 3 (2007). http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a122/

[1] Alvarez O., Ferreira L. A., Sanchez-Guillen J., “A new approach to integrable theories in any dimension”, Nuclear Phys. B, 529 (1998), 689–736 | DOI | MR | Zbl

[2] Aratyn H., Ferreira L. A., Zimerman A., “Toroidal solitons in (3+1)-dimensional integrable theories”, Phys. Lett. B, 456 (1999), 162–170 | DOI | MR | Zbl

[3] Aratyn H., Ferreira L. A., Zimerman A., “Exact static soliton solutions of (3+1)-dimensional integrable theory with nonzero Hopf numbers”, Phys. Rev. Lett., 83 (1999), 1723–1726 | DOI

[4] De Carli E., Ferreira L. A., “A model for Hopfions on the space-time $S^3\times\mathbb R$”, J. Math. Phys., 46 (2005), 012703, 10 pp., ages ; hep-th/0406244 | DOI | MR

[5] Wereszczynski A., “Integrability and Hopf solitons in models with explicitly broken $O(3)$ symmetry”, Eur. Phys. J. C Part. Fields, 38 (2004), 261–265 ; hep-th/0405155 | DOI | MR

[6] Ferreira L. A., “Exact time dependent Hopf solitons in 3+1 dimensions”, J. High Energy Phys., 2006:3 (2006), 075, 9 pp., ages ; hep-th/0601235 | DOI | MR

[7] Riserio do Bonfim A. C., Ferreira L. A., “Spinning Hopf solitons on $S^3\times\mathbb R$”, J. High Energy Phys., 2006:3 (2006), 097, 12 pp., ages ; hep-th/0602234 | DOI

[8] Nicole D. A., “Solitons with nonvanishing Hopf index”, J. Phys. G, 4 (1978), 1363–1369 | DOI

[9] Wereszczynski A., “Toroidal solitons in Nicole-type models”, Eur. Phys. J. C Part. Fields, 41 (2005), 265–268 ; math-ph/0504008 | DOI | MR

[10] Wereszczynski A., “Generalized eikonal knots and new integrable dynamical systems”, Phys. Lett. B, 621 (2005), 201–207 ; hep-th/0508121 | DOI | MR

[11] Adam C., Sanchez-Guillen J., Vazquez R. A., Wereszczynski A., “Investigation of the Nicole model”, J. Math. Phys., 47 (2006), 052302, 22 pp., ages ; hep-th/0602152 | DOI | MR | Zbl

[12] Ward R. S., “Hopf solitons on $S^3$ and $\mathbf R^3$”, Nonlinearity, 12 (1999), 241–246 | DOI | MR | Zbl

[13] Adam C., Sanchez-Guillen J., Wereszczynski A., “Hopf solitons and Hopf $Q$-balls on $S^3$”, Eur. Phys. J. C Part. Fields, 47 (2006), 513–524 ; hep-th/0602008 | DOI | MR

[14] Skyrme T. H. R., “A nonlinear field theory”, Proc. R. Soc. Lond. A, 260 (1961), 127–138 | DOI | MR | Zbl

[15] Skyrme T. H. R., “A unified field theory of mesons and baryons”, Nuclear Phys., 31 (1962), 556–569 | DOI | MR

[16] Ferreira L. A., Sanchez-Guillen J., “Infinite symmetries in the Skyrme model”, Phys. Lett. B, 504 (2001), 195–200 ; hep-th/0010168 | DOI | MR

[17] Babelon O., Ferreira L. A., “Integrability and conformal symmetry in higher dimensions: a model with exact Hopfion solutions”, J. High Energy Phys., 2002:11 (2002), 020, 26 pp., ages | DOI | MR

[18] Adam C., Sanchez-Guillen J., “Generalized integrability conditions and target space geometry”, Phys. Lett. B, 626 (2005), 235–242 ; hep-th/0508011 | DOI | MR

[19] Adam C., Sanchez-Guillen J., Wereszczynski A., “Integrability from an Abelian subgroup of the diffeomorphism group”, J. Math. Phys., 47 (2006), 022303, 8 pp., ages ; hep-th/0511277 | DOI | MR | Zbl

[20] Adam C., Sanchez-Guillen J., Wereszczynski A., “Conservation laws in Skyrme-type models”, J. Math. Phys., 48 (2007), 032302, 16 pp., ages ; hep-th/0610227 | DOI | MR | Zbl

[21] Adam C., Sanchez-Guillen J., Wereszczynski A., Integrable subsystem of Yang–Mills dilaton theory, hep-th/0703224 | MR

[22] Schlesinger L., “Parallelverschiebung und Krümmungstensor”, Math. Ann., 99 (1927), 413–434 | DOI | MR

[23] Adam C., Sanchez-Guillen J., “Symmetries of generalized soliton models and submodels on target space $S^2$”, J. High Energy Phys., 2005:1 (2005), 004, 15 pp., ages ; hep-th/0412028 | DOI | MR