Some Progress in Conformal Geometry
Symmetry, integrability and geometry: methods and applications, Tome 3 (2007) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This is a survey paper of our current research on the theory of partial differential equations in conformal geometry. Our intention is to describe some of our current works in a rather brief and expository fashion. We are not giving a comprehensive survey on the subject and references cited here are not intended to be complete. We introduce a bubble tree structure to study the degeneration of a class of Yamabe metrics on Bach flat manifolds satisfying some global conformal bounds on compact manifolds of dimension 4. As applications, we establish a gap theorem, a finiteness theorem for diffeomorphism type for this class, and diameter bound of the $\sigma _2$-metrics in a class of conformal 4-manifolds. For conformally compact Einstein metrics we introduce an eigenfunction compactification. As a consequence we obtain some topological constraints in terms of renormalized volumes.
Keywords: Bach flat metrics; bubble tree structure; degeneration of metrics; conformally compact; Einstein; renormalized volume.
@article{SIGMA_2007_3_a121,
     author = {Sun-Yung A. Chang and Jie Qing and Paul Yang},
     title = {Some {Progress} in {Conformal} {Geometry}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2007},
     volume = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a121/}
}
TY  - JOUR
AU  - Sun-Yung A. Chang
AU  - Jie Qing
AU  - Paul Yang
TI  - Some Progress in Conformal Geometry
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2007
VL  - 3
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a121/
LA  - en
ID  - SIGMA_2007_3_a121
ER  - 
%0 Journal Article
%A Sun-Yung A. Chang
%A Jie Qing
%A Paul Yang
%T Some Progress in Conformal Geometry
%J Symmetry, integrability and geometry: methods and applications
%D 2007
%V 3
%U http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a121/
%G en
%F SIGMA_2007_3_a121
Sun-Yung A. Chang; Jie Qing; Paul Yang. Some Progress in Conformal Geometry. Symmetry, integrability and geometry: methods and applications, Tome 3 (2007). http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a121/

[1] Anderson M., “Orbifold compactness for spaces of Riemannian metrics and applications”, Math. Ann., 331 (2005), 739–778 ; math.DG/0312111 | DOI | MR | Zbl

[2] Anderson M., Cheeger J., “Diffeomorphism finiteness for manifolds with Ricci curvature and $L^{n/2}$-norm of curvature bounded”, Geom. Funct. Anal., 1 (1991), 231–252 | DOI | MR | Zbl

[3] Brezis H., Coron J. M., “Convergence of solutions of H-systems or how to blow bubbles”, Arch. Ration. Mech. Anal., 89 (1985), 21–56 | DOI | MR | Zbl

[4] Bray H., Neves A., “Classification of prime 3-manifolds with Yamabe invariant larger than $RP^3$”, Ann. of Math. (2), 159 (2004), 407–424 | DOI | MR | Zbl

[5] Chang S.-Y. A., Qing J., Yang P., “On a conformal gap and finiteness theorem for a class of four-manifolds”, Geom. Funct. Anal., 17 (2007), 404–434 ; math.DG/0508621 | DOI | MR | Zbl

[6] Chang S.-Y. A., Qing J., Yang P., “On the topology of conformally compact Einstein 4-manifolds”, Noncompact Problems at the Intersection of Geometry, Analysis, and Topology, Contemp. Math., 350, 2004, 49–61 ; math.DG/0305085 | MR | Zbl

[7] Chang S.-Y. A., Gursky M., Yang P., “An equation of Monge–Ampére type in conformal geometry and 4-manifolds of positive Ricci curvature”, Ann. of Math. (2), 155 (2002), 709–787 ; math.DG/0409583 | DOI | MR | Zbl

[8] Chang S.-Y. A., Gursky M., Yang P., “An apriori estimate for a fully nonlinear equation on 4-manifolds”, J. D'Analyse Math., 87 (2002), 151–186 | DOI | MR | Zbl

[9] Graham C. R., “Volume and area renormalizations for conformally compact Einstein metrics”, The Proceedings of the 19th Winter School “Geometry and Physics” (1999, Srnì), Rend. Circ. Mat. Palermo (2), 63, suppl., 2000, 31–42 ; math.DG/9909042 | MR | Zbl

[10] Graham C. R., Lee J., “Einstein metrics with prescribed conformal infinity on the ball”, Adv. Math., 87 (1991), 186–225 | DOI | MR | Zbl

[11] Qing J., “On singularities of the heat flow for harmonic maps from surfaces into spheres”, Comm. Anal. Geom., 3 (1995), 297–315 | MR | Zbl

[12] Qing J., “On the rigidity for conformally compact Einstein manifolds”, Int. Math. Res. Not., 2003 (2003), 1141–1153 ; math.DG/0305084 | DOI | MR | Zbl

[13] Struwe M., “Global compactness result for elliptic boundary value problem involving limiting nonlinearities”, Math. Z., 187 (1984), 511–517 | DOI | MR | Zbl

[14] Tian G., Viaclovsky J., “Bach flat asymptotically ALE metrics”, Invent. Math., 160 (2005), 357–415 ; math.DG/0310302 | DOI | MR | Zbl

[15] Tian G., Viaclovsky J., “Moduli space of critical Riemannian metrics in dimension 4”, Adv. Math., 196 (2005), 346–372 ; math.DG/0312318 | DOI | MR | Zbl