@article{SIGMA_2007_3_a121,
author = {Sun-Yung A. Chang and Jie Qing and Paul Yang},
title = {Some {Progress} in {Conformal} {Geometry}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2007},
volume = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a121/}
}
Sun-Yung A. Chang; Jie Qing; Paul Yang. Some Progress in Conformal Geometry. Symmetry, integrability and geometry: methods and applications, Tome 3 (2007). http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a121/
[1] Anderson M., “Orbifold compactness for spaces of Riemannian metrics and applications”, Math. Ann., 331 (2005), 739–778 ; math.DG/0312111 | DOI | MR | Zbl
[2] Anderson M., Cheeger J., “Diffeomorphism finiteness for manifolds with Ricci curvature and $L^{n/2}$-norm of curvature bounded”, Geom. Funct. Anal., 1 (1991), 231–252 | DOI | MR | Zbl
[3] Brezis H., Coron J. M., “Convergence of solutions of H-systems or how to blow bubbles”, Arch. Ration. Mech. Anal., 89 (1985), 21–56 | DOI | MR | Zbl
[4] Bray H., Neves A., “Classification of prime 3-manifolds with Yamabe invariant larger than $RP^3$”, Ann. of Math. (2), 159 (2004), 407–424 | DOI | MR | Zbl
[5] Chang S.-Y. A., Qing J., Yang P., “On a conformal gap and finiteness theorem for a class of four-manifolds”, Geom. Funct. Anal., 17 (2007), 404–434 ; math.DG/0508621 | DOI | MR | Zbl
[6] Chang S.-Y. A., Qing J., Yang P., “On the topology of conformally compact Einstein 4-manifolds”, Noncompact Problems at the Intersection of Geometry, Analysis, and Topology, Contemp. Math., 350, 2004, 49–61 ; math.DG/0305085 | MR | Zbl
[7] Chang S.-Y. A., Gursky M., Yang P., “An equation of Monge–Ampére type in conformal geometry and 4-manifolds of positive Ricci curvature”, Ann. of Math. (2), 155 (2002), 709–787 ; math.DG/0409583 | DOI | MR | Zbl
[8] Chang S.-Y. A., Gursky M., Yang P., “An apriori estimate for a fully nonlinear equation on 4-manifolds”, J. D'Analyse Math., 87 (2002), 151–186 | DOI | MR | Zbl
[9] Graham C. R., “Volume and area renormalizations for conformally compact Einstein metrics”, The Proceedings of the 19th Winter School “Geometry and Physics” (1999, Srnì), Rend. Circ. Mat. Palermo (2), 63, suppl., 2000, 31–42 ; math.DG/9909042 | MR | Zbl
[10] Graham C. R., Lee J., “Einstein metrics with prescribed conformal infinity on the ball”, Adv. Math., 87 (1991), 186–225 | DOI | MR | Zbl
[11] Qing J., “On singularities of the heat flow for harmonic maps from surfaces into spheres”, Comm. Anal. Geom., 3 (1995), 297–315 | MR | Zbl
[12] Qing J., “On the rigidity for conformally compact Einstein manifolds”, Int. Math. Res. Not., 2003 (2003), 1141–1153 ; math.DG/0305084 | DOI | MR | Zbl
[13] Struwe M., “Global compactness result for elliptic boundary value problem involving limiting nonlinearities”, Math. Z., 187 (1984), 511–517 | DOI | MR | Zbl
[14] Tian G., Viaclovsky J., “Bach flat asymptotically ALE metrics”, Invent. Math., 160 (2005), 357–415 ; math.DG/0310302 | DOI | MR | Zbl
[15] Tian G., Viaclovsky J., “Moduli space of critical Riemannian metrics in dimension 4”, Adv. Math., 196 (2005), 346–372 ; math.DG/0312318 | DOI | MR | Zbl