@article{SIGMA_2007_3_a120,
author = {C. Robin Graham},
title = {Conformal {Powers} of the {Laplacian} via {Stereographic} {Projection}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2007},
volume = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a120/}
}
C. Robin Graham. Conformal Powers of the Laplacian via Stereographic Projection. Symmetry, integrability and geometry: methods and applications, Tome 3 (2007). http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a120/
[1] Branson T., “Sharp inequalities, the functional determinant, and the complementary series”, Trans. Amer. Math. Soc., 347 (1995), 3671–3742 | DOI | MR | Zbl
[2] Fefferman C., Graham C. R., The ambient metric, arXiv:0710.0919
[3] Gover A. R., “Laplacian operators and $Q$-curvature on conformally Einstein manifolds”, Math. Ann., 336 (2006), 311–334 ; math.DG/0506037 | DOI | MR | Zbl
[4] Graham C. R., “Compatibility operators for degenerate elliptic equations on the ball and Heisenberg group”, Math. Z., 187 (1984), 289–304 | DOI | MR | Zbl
[5] Graham C. R., Jenne R., Mason L. J., Sparling G. A. J., “Conformally invariant powers of the Laplacian, I: Existence”, J. London Math. Soc., 46 (1992), 557–565 | DOI | MR | Zbl
[6] Dowker, JS, “Determinants and conformal anomalies of GJMS operators on spheres”, Journal of Physics A-Mathematical and Theoretical, 44:11, 115402 | DOI