Branson's $Q$-curvature in Riemannian and Spin Geometry
Symmetry, integrability and geometry: methods and applications, Tome 3 (2007) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

On a closed $n$-dimensional manifold, $n\ge 5$, we compare the three basic conformally covariant operators: the Paneitz–Branson, the Yamabe and the Dirac operator (if the manifold is spin) through their first eigenvalues. On a closed 4-dimensional Riemannian manifold, we give a lower bound for the square of the first eigenvalue of the Yamabe operator in terms of the total Branson's $Q$-curvature. As a consequence, if the manifold is spin, we relate the first eigenvalue of the Dirac operator to the total Branson's $Q$-curvature. Equality cases are also characterized.
Keywords: Branson's $Q$-curvature; eigenvalues; Yamabe operator; Paneitz–Branson operator; Dirac operator; $\sigma_k$-curvatures; Yamabe invariant; conformal geometry; Killing spinors.
@article{SIGMA_2007_3_a118,
     author = {Oussama Hijazi and Simon Raulot},
     title = {Branson's $Q$-curvature in {Riemannian} and {Spin} {Geometry}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2007},
     volume = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a118/}
}
TY  - JOUR
AU  - Oussama Hijazi
AU  - Simon Raulot
TI  - Branson's $Q$-curvature in Riemannian and Spin Geometry
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2007
VL  - 3
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a118/
LA  - en
ID  - SIGMA_2007_3_a118
ER  - 
%0 Journal Article
%A Oussama Hijazi
%A Simon Raulot
%T Branson's $Q$-curvature in Riemannian and Spin Geometry
%J Symmetry, integrability and geometry: methods and applications
%D 2007
%V 3
%U http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a118/
%G en
%F SIGMA_2007_3_a118
Oussama Hijazi; Simon Raulot. Branson's $Q$-curvature in Riemannian and Spin Geometry. Symmetry, integrability and geometry: methods and applications, Tome 3 (2007). http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a118/

[1] Ammann B., Bär C., “Dirac eigenvalues and total scalar curvature”, J. Geom. Phys., 33 (2000), 229–234 ; math.DG/9909061 | DOI | MR | Zbl

[2] Atiyah M. F., Singer I. M., “The index of elliptic operators I”, Ann. of Math. (2), 87 (1968), 484–530 | DOI | MR | Zbl

[3] Aubin T., “Équations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire”, J. Math. Pures Appl. (9), 55 (1976), 269–296 | MR | Zbl

[4] Bär C., “Lower eigenvalue estimate for Dirac operator”, Math. Ann., 293 (1992), 39–46 | DOI | MR | Zbl

[5] Bourguignon J. P., Hijazi O., Milhorat J. L., Moroianu A., A spinorial approch to Riemannian and conformal geometry, monograph in preparation

[6] Chang S.-Y. A., Gursky M., Yang P., “An equation of Monge–Ampère type in conformal geometry, and four-manifolds of positive Ricci curvature”, Ann. of Math. (2), 155 (2002), 709–787 ; math.DG/0409583 | DOI | MR | Zbl

[7] Friedrich T., “Der erste eigenwert des Dirac-operators einer kompakten Riemannschen manniftigkeit nicht negativer skalarkrümmung”, Math. Nachr., 97 (1980), 117–146 | DOI | MR | Zbl

[8] Friedrich T., “A remark on the first eigenvalue of the Dirac operator on $4$-dimensional manifolds”, Math. Nachr., 102 (1981), 53–56 | DOI | MR | Zbl

[9] Friedrich T., Dirac operators in Riemannian geometry, Graduate Studies in Mathematics, 25, American Mathematical Society, Providence, RI, 2000 | MR | Zbl

[10] Gursky M., Viaclovsky J., “A fully nonlinear equation on $4$-manifolds with positive scalar curvature”, J. Differential Geom., 63 (2003), 131–154 ; math.DG/0301350 | MR | Zbl

[11] Hijazi O., “A conformal lower bound for the smallest eigenvalue of the Dirac operator and Killing spinors”, Comm. Math. Phys., 25 (1986), 151–162 | DOI | MR

[12] Hijazi O., “Première valeur propre de l'opérateur de Dirac et nombre de Yamabe”, C. R. Math. Acad. Sci. Paris, 313 (1991), 865–868 | MR | Zbl

[13] Hijazi O., “Spectral properties of the Dirac operator and geometrical structures”, Proceedings of the Summer School on Geometric Methods in Quantum Field Theory (1999, Villa de Leyva, Columbia), World Scientific, Singapore, 2001, 116–169 | MR | Zbl

[14] Hitchin N., “Harmonic spinors”, Adv. Math., 14 (1974), 1–55 | DOI | MR | Zbl

[15] Lawson H. B., Michelsohn M. L., Spin geometry, Princeton Math. Series, 38, Princeton University Press, 1989 | MR | Zbl

[16] Lee J. M., Parker T. H., “The Yamabe problem”, Bull. Amer. Math. Soc. (N.S.), 17 (1987), 37–91 | DOI | MR | Zbl

[17] Li A., Li Y., “On some conformally invariant fully nonlinear equations”, Comm. Pure Appl. Math., 56 (2003), 1416–1464 | DOI | MR | Zbl

[18] Lichnerowicz A., “Spineurs harmoniques”, C. R. Acad. Sci. Ser. A-B, 257 (1963), 7–9 | MR | Zbl

[19] Schoen R., “Conformal deformation of a Riemannian metric to constant scalar curvature”, J. Differential Geom., 20 (1984), 473–495 | MR

[20] Trudinger N. S., “Remarks concerning the conformal deformation of Riemannian structures on compact manifolds”, Ann. Sc. Norm. Super. Pisa (3), 22 (1968), 265–274 | MR | Zbl

[21] Viaclovsky J., “Conformal geometry, contact geometry, and the calculus of variations”, Duke Math. J., 101 (2000), 283–316 | DOI | MR | Zbl

[22] Wang G., “$\sigma_k$-scalar curvature and eigenvalues of the Dirac operator”, Ann. Global Anal. Geom., 30 (2006), 65–71 | DOI | MR | Zbl

[23] Yamabe H., “On a deformation of Riemannian structures on compact manifolds”, Osaka Math. J., 12 (1960), 21–37 | MR | Zbl