@article{SIGMA_2007_3_a117,
author = {Mohammed Larbi Labbi},
title = {On {Gauss{\textendash}Bonnet} {Curvatures}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2007},
volume = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a117/}
}
Mohammed Larbi Labbi. On Gauss–Bonnet Curvatures. Symmetry, integrability and geometry: methods and applications, Tome 3 (2007). http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a117/
[1] Adler R. J., “On excursion sets, tube formulas and maxima of random fields”, Ann. Appl. Probab., 10 (2000), 1–74 | MR | Zbl
[2] Albin P., Renormalizing curvature integrals on Poincaré–Einstein manifolds, math.DG/0504161 | MR
[3] Berger M., “Quelques formules de variation pour une structure riemannienne”, Ann. Sci. Ecole Norm. Sup. (4), 3 (1970), 285–294 | MR | Zbl
[4] Bernig A., “Variations of curvatures of subanalytic spaces and Schläfli-type formulas”, Ann. Global Anal. Geom., 24 (2003), 67–93 | DOI | MR | Zbl
[5] Bernig A., On some aspects of curvature, available at http://homeweb1.unifr.ch/BernigA/pub/
[6] Besse A. L., Einstein manifolds, Springer-Verlag, Berlin, 1987 | MR
[7] Bourguignon J. P., “Les variétés de dimension $4$ à signature non nulle dont la courbure est harmonique sont d'Einstein”, Invent. Math., 63 (1981), 263–286 | DOI | MR | Zbl
[8] Cai R. G., Ohta N., “Black holes in pure lovelock gravities”, Phys. Rev. D, 74 (2006), 064001, 8 pp., ages ; hep-th/0604088 | DOI | MR
[9] Cheeger J., Müller W., Schräder R., “On the curvature of piecewise flat spaces”, Comm. Math. Phys., 92 (1984), 405–454 | DOI | MR | Zbl
[10] Deruelle N., Madore J., On the quasi-linearity of the Einstein–Gauss–Bonnet gravity field equations, gr-qc/0305004
[11] Fenchel W., “On total curvatures of Riemannian manifolds. I”, J. Lond. Math. Soc., 15 (1940), 15–22 | DOI | MR
[12] Gray A., “Some relations between curvature and characteristic classes”, Math. Ann., 184 (1970), 257–267 | DOI | MR | Zbl
[13] Gray A., Tubes, Progress in Mathematics, 221, Birkhäuser Verlag, Basel, 2004 | MR
[14] Ishihara T., “Kinematic formulas for Weyl's curvature invariants on submanifolds in complex projective space”, Proc. Amer. Math. Soc., 97 (1986), 483–487 | DOI | MR | Zbl
[15] Kowalski O., “On the Gauss–Kronecker curvature tensors”, Math. Ann., 203 (1973), 335–343 | DOI | MR | Zbl
[16] Kulkarni R. S., “On Bianchi identities”, Math. Ann., 199 (1972), 175–204 | DOI | MR | Zbl
[17] Labbi M. L., “Double forms, curvature structures and the $(p,q)$-curvatures”, Trans. Amer. Math. Soc., 357 (2005), 3971–3992 ; math.DG/0404081 | DOI | MR | Zbl
[18] Labbi M. L., “On compact manifolds with positive second Gauss–Bonnet curvature”, Pacific J. Math., 227 (2006), 295–310 | DOI | MR | Zbl
[19] Labbi M. L., “Variational properties of the Gauss–Bonnet curvatures”, Calculus of Variations and Partial Differential Equations, 32:2 (2008), 175–189 ; ; Labbi M. L., Riemannian curvature: variations on different notions of positivity, math.DG/0406548math.DG/0611371 | DOI | MR | Zbl
[20] Labbi M. L., On Weitzenböck curvature operators, math.DG/0607521
[21] Labbi M. L., Remarks on generalized Einstein manifolds, math.DG/0703028
[22] Labbi M. L., On $(2k)$-minimal submanifolds, arXiv:0706.3092 | MR
[23] Lafontaine J., “Mesures de courbure des variétés lisses et des polyèdres [d'après Cheeger, Müller et Schräder]”, Séminaire Bourbaki, 38ème année, 1985–86, Exp. No. 664, Asterisque, 145/146, 1987, 241–256 | MR | Zbl
[24] Lovelock D., “The Einstein tensor and its generalizations”, J. Math. Phys., 12 (1971), 498–501 | DOI | MR | Zbl
[25] Madore J., “Cosmological applications of the Lanczos Lagrangian”, Classical Quantum Gravity, 3 (1986), 361–371 | DOI | MR | Zbl
[26] Muto Y., “Critical Riemannian metrics”, Tensor, 29 (1975), 125–133 | MR | Zbl
[27] Nasu T., “On conformal invariants of higher order”, Hiroshima Math. J., 5 (1975), 43–60 | MR | Zbl
[28] Nomizu K., “On the decomposition of generalized curvature tensor fields. Codazzi, Ricci, Bianchi and Weyl revisited”, Differential Geometry, in Honor of Kentaro Yano, Kinokuniya, Tokyo, 1972, 335–345 | MR
[29] Patterson E. M., “A class of critical Riemannian metrics”, J. London Math. Soc., 2 (1981), 349–358 | DOI | MR | Zbl
[30] Reilly R. C., “Variational properties of functions of the mean curvatures for hypersurfaces in space forms”, J. Differential Geom., 8 (1973), 465–477 | MR | Zbl
[31] Reilly R. C., “Variational properties of mean curvatures”, Proceedings of the Thirteenth Biennial Seminar of the Canadian Mathematical Congress, Vol. 2 (Dalhousie Univ., Halifax, N.S., 1971), 1971, 102–114 | MR
[32] Senovilla J. M. M., “Super-energy tensors”, Classical Quantum Gravity, 17 (2000), 2799–2842 ; gr-qc/9906087 | DOI | MR
[33] Sheng W., Trudinger N. S., Wang X.-J., “The Yamabe problem for higher order curvatures”, J. Differential Geom., 77:3 (2007), 515–553 | MR | Zbl
[34] Stehney A., “Courbure d'ordre $p$ et les classes de Pontrjagin”, J. Differential Geom., 8 (1973), 125–134 | MR | Zbl
[35] Thorpe J. A., “Some remarks on the Gauss–Bonnet integral”, J. Math. Mech., 18 (1969), 779–786 | MR | Zbl
[36] Viaclovsky J., “Conformal geometry and fully nonlinear equations”, Inspired by S. S. Chern, Nankai Tracts Math., 11, World Sci. Publ., Hackensack, NJ, 2006, 435–460 ; math.DG/0609158 | MR | Zbl
[37] Weyl H., “On the volume of tubes”, Amer. J. Math., 61 (1939), 461–472 | DOI | MR