@article{SIGMA_2007_3_a116,
author = {Ilya D. Feranchuk and Sergey I. Feranchuk},
title = {Self-Localized {Quasi-Particle} {Excitation} in {Quantum} {Electrodynamics} and {Its} {Physical} {Interpretation}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2007},
volume = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a116/}
}
TY - JOUR AU - Ilya D. Feranchuk AU - Sergey I. Feranchuk TI - Self-Localized Quasi-Particle Excitation in Quantum Electrodynamics and Its Physical Interpretation JO - Symmetry, integrability and geometry: methods and applications PY - 2007 VL - 3 UR - http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a116/ LA - en ID - SIGMA_2007_3_a116 ER -
%0 Journal Article %A Ilya D. Feranchuk %A Sergey I. Feranchuk %T Self-Localized Quasi-Particle Excitation in Quantum Electrodynamics and Its Physical Interpretation %J Symmetry, integrability and geometry: methods and applications %D 2007 %V 3 %U http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a116/ %G en %F SIGMA_2007_3_a116
Ilya D. Feranchuk; Sergey I. Feranchuk. Self-Localized Quasi-Particle Excitation in Quantum Electrodynamics and Its Physical Interpretation. Symmetry, integrability and geometry: methods and applications, Tome 3 (2007). http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a116/
[1] Weinberg S., “Unified theories of elementary particle interactions”, Scientific American, 231 (1974), 50–58 | DOI
[2] Akhiezer A. I., Beresteckii V. B., Quantum electrodynamics, Nauka, Moscow, 1969; Bogoliubov N. N., Shirkov D. V., Introduction to the theory of quantum fields, Nauka, Moscow, 1973
[3] Scharf G., Finite quantum electrodynamics: the causal approach, John Wiley and Sons, Inc., USA, 2001 ; Scharf G., Quantum gauge theories: a true ghost story, Springer Verlag, Berlin – Heidelberg – New York, 1995 | MR | MR
[4] Dirac P. A. M., The principles of quantum mechanics, The Clarendon Press, Oxford, 1958 | MR
[5] Feynman R. P., “Nobel lecture”, Science, 153 (1966), 699–711 | DOI
[6] Lifshitz E. M., Pitaevskii L. P., Relativistic quantum theory, Part II, Nauka, Moscow, 1971
[7] Janke W., Pelster A., Schmidt H.-J., Bachmann M. (ed.), Fluctuating paths and fields, Proceedings dedicated to Hagen Kleinert, World Scientific, Singapore, 2001 | MR
[8] Dirac P. A. M., “An extensible model of the electron”, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 268 (1962), 57–67 | DOI | MR | Zbl
[9] Klevansky S. P., “The Nambu–Jona–Lasinio model of quantum chromodynamics”, Rev. Modern Phys., 64 (1992), 649–671 ; Gusynin V. P., Miransky V. A., Shovkovy I. A., “Large $N$ dynamics in QED in a magnetic field”, Phys. Rev. D, 67 (2003), 107703, 4 pp., ages ; hep-ph/0304059 | DOI | MR | DOI
[10] Hong D. K., Rajeev S. G., “Towards a bosonization of quantum electrodynamics”, Phys. Rev. Lett., 21 (1990), 2475–2479 | DOI
[11] Miransky V. A., “Dynamics of spontaneous chiral symmetry breaking and continuous limit in quantum electrodynamics”, Nuovo Cimento A, 90 (1985), 149–160 | DOI
[12] Alexandrou C., Rosenfelder R., Schreiber A. W., “Nonperturbative mass renormalization in quenched QED from the worldline variational approach”, Phys. Rev. D, 62 (2000), 085009, 10 pp., ages | DOI
[13] Pekar S. I., “Autolocalization of the electron in the dielectric inertially polarized media”, J. Exp. Theor. Phys., 16 (1946), 335–340
[14] Bogoliubov N. N., “About one new form of the adiabatic perturbation theory in the problem of interaction between particle and quantum field”, Ukr. Mat. Zh., 2 (1950), 3–24 ; Tyablikov S. V., “Adiabatic form of the perturbation theory in the problem of interaction between paricle and quantum field”, J. Exp. Theor. Phys., 21 (1951), 377–388 | MR | MR
[15] Dodd R. K., Eilbeck J. C., Gibbon J. D., Moris H. C., Solitons and nonlinear wave equations, Academic Press, London, 1984
[16] Fröhlich H., “Electrons in lattice fields”, Adv. Phys., 3 (1954), 325–361 | DOI | Zbl
[17] Heitler W., The quantum theory of radiation, The Clarendon Press, Oxford, 1954
[18] Landau L. D., Lifshitz E. M., Quantum mechanics, Nauka, Moscow, 1963
[19] Gross E. P., “Strong coupling polaron theory and translational invariance”, Ann. Physics, 99 (1976), 1–29 | DOI | MR
[20] Bagan E., Lavelle M., McMullan D., “Charges from dressed matter: physics and renormalization”, Ann. Physics, 282 (2000), 503–540 ; hep-ph/9909262 | DOI | MR | Zbl
[21] Yukalov V. I., “Nonperturbative theory for anharmonic oscillator”, Theoret. and Math. Phys., 28 (1976), 652–660 ; Caswell W. E., “Accurate energy levels for the anharmonic oscillator and series for the double-well potential in perturbation theory”, Ann. Physics, 123 (1979), 153–182 | DOI | DOI
[22] Feranchuk I. D., Komarov L. I., “The operator method of the approximate solution of the Schrödinger equation”, Phys. Lett. A, 88 (1982), 211–214 | DOI | MR
[23] Feranchuk I. D., Komarov L. I., Nichipor I. V., Ulyanenkov A. P., “Operator method in the problem of quantum anharmonic oscillator”, Ann. Physics, 238 (1995), 370–440 | DOI | MR | Zbl
[24] Feranchuk I. D., Komarov L. I., Ulyanenkov A. P., “Two-level system in a one-mode quantum field: numerical solution on the basis of the operator method”, J. Phys. A: Math. Gen., 29 (1996), 4035–4047 | DOI | Zbl
[25] Feranchuk I. D., Komarov L. I., Ulyanenkov A. P., “A new method for calculation of crystal susceptibilities for $x$-ray diffraction at arbitrary wavelength”, Acta Crystallogr. Sect. A, 58 (2002), 370–384 | DOI
[26] Fradkin E. S., “Renormalization in quantum electrodynamics with self-consistent field”, Proc. Fiz. Inst. of Soviet Academy of Science, 29 (1965), 1–154; Fradkin E. S., “Application of functional methods in quantum field theory and quantum statistics”, Nuclear Phys., 76 (1966), 588–612 | DOI | MR
[27] Bogoliubov N. N., Quasi-mean values in the problems of statistical mechanics, Selected Works, Vol. 3, Naukova Dumka, Kiev, 1971
[28] Komarov L. I., Krylov E. V., Feranchuk I. D., “Numerical solution of the nonlinear eigenvalue problem”, Zh. Vychisl. Mat. Mat. Fiz., 18 (1978), 681–691 | MR | Zbl
[29] Feranchuk I. D., Feranchuk S. I., Self-consistent state in the strong-coupling QED, hep-th/0309072
[30] Bawin M., Lavine J. D., “On the existence of a critical charge for superheavy nucleus”, Nuovo Cimento, 15 (1973), 38–44 | DOI
[31] Feranchuk I. D., Finite electron charge and mass renormalization in quantum electrodynamics, math-ph/0605028
[32] Shnir Ya. M., Monopol, Springer, Berlin, 2005 | MR
[33] Brodsky S. J., Drell S. D., “Anomalous magnetic moment and limits on fermion substructure”, Phys. Rev. D, 22 (1980), 2236–2242 | DOI
[34] Feynman R. P., “Slow electrons in a polar crystal”, Phys. Rev., 97 (1955), 660–665 | DOI | Zbl
[35] Landau L. D., Pekar S. I., “Effective mass of the polaron”, J. Exp. Theor. Phys., 18 (1948), 419–423
[36] Eides M. I., Grotch H., Shelyuto V. A., “Theory of light hydrogenlike atoms”, Phys. Rep., 342 (2001), 63–261 ; hep-ph/0002158 | DOI | Zbl
[37] Bjorken J. D., Drell S. D., Relativistic quantum mechanics, McGraw-Hill Book Company, London, 1976 | MR