Exact Solutions of the Equations of Relativistic Hydrodynamics Representing Potential Flows
Symmetry, integrability and geometry: methods and applications, Tome 3 (2007) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We use a connection between relativistic hydrodynamics and scalar field theory to generate exact analytic solutions describing non-stationary inhomogeneous flows of the perfect fluid with one-parametric equation of state (EOS) $p=p(\varepsilon)$. For linear EOS $p=\kappa\varepsilon$ we obtain self-similar solutions in the case of plane, cylindrical and spherical symmetries. In the case of extremely stiff EOS ($\kappa=1$) we obtain "monopole $+$ dipole" and "monopole $+$ quadrupole" axially symmetric solutions. We also found some nonlinear EOSs that admit analytic solutions.
Keywords: relativistic hydrodynamics; exact solutions.
@article{SIGMA_2007_3_a115,
     author = {Maxim S. Borshch and Valery I. Zhdanov},
     title = {Exact {Solutions} of the {Equations} of {Relativistic} {Hydrodynamics} {Representing} {Potential} {Flows}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2007},
     volume = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a115/}
}
TY  - JOUR
AU  - Maxim S. Borshch
AU  - Valery I. Zhdanov
TI  - Exact Solutions of the Equations of Relativistic Hydrodynamics Representing Potential Flows
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2007
VL  - 3
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a115/
LA  - en
ID  - SIGMA_2007_3_a115
ER  - 
%0 Journal Article
%A Maxim S. Borshch
%A Valery I. Zhdanov
%T Exact Solutions of the Equations of Relativistic Hydrodynamics Representing Potential Flows
%J Symmetry, integrability and geometry: methods and applications
%D 2007
%V 3
%U http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a115/
%G en
%F SIGMA_2007_3_a115
Maxim S. Borshch; Valery I. Zhdanov. Exact Solutions of the Equations of Relativistic Hydrodynamics Representing Potential Flows. Symmetry, integrability and geometry: methods and applications, Tome 3 (2007). http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a115/

[1] Landau L. D., “On the multiple production of particles in fast particle collisions”, Izv. AN SSSR Ser. Fiz., 17 (1953), 51–64 (in Russian) | Zbl

[2] Khalatnikov I. M., “Some questions of the relativistic hydrodynamics”, J. Exp. Theor. Phys., 27 (1954), 529–541 (in Russian) | MR | Zbl

[3] Landau L. D., Liftshitz E. M., Hydrodynamics, Nauka, Moscow, 1986 (in Russian)

[4] Milekhin G. A., “Nonlinear scalar fields and multiple particle production”, Izv. AN SSSR Ser. Fiz., 26 (1962), 635–641 (in Russian)

[5] Hwa R. C., “Statistical description of hadron constituents as a basis for the fluid model of high-energy collisions”, Phys. Rev. D, 10 (1974), 2260–2268 | DOI

[6] Cooper F., Frye G., Shonberg E., “Landau's hydrodynamical model of particle production and electron-positron annihilation into hadrons”, Phys. Rev. D, 11 (1975), 192–213 | DOI

[7] Chiu C. B., Sudarshan E. C. G., Wang K.-H., “Hydrodynamical expansion with frame-independence symmetry in high-energy multiparticle production”, Phys. Rev. D, 12 (1975), 902–908 | DOI

[8] Bjorken J. D., “Highly relativistic nucleus-nucleus collisions: the central rapidity region”, Phys. Rev. D, 27 (1983), 140–151 | DOI

[9] Csörgö T., Nagy M. I., Csanád M., New family of simple solutions of relativistic perfect fluid hydrodynamics, nucl-th/0605070

[10] Nagy M. I., Csörgö T., Csanád M., Detailed description of accelerating, simple solutions of relativistic perfect fluid hydrodynamics, arXiv:0709.3677

[11] Pratt S., “A co-moving coordinate system for relativistic hydrodynamics”, Phys. Rev. C, 75 (2007), 024907, 14 pp., ages ; nucl-th/0612010 | DOI

[12] Blandford R. D., McKee C. F., “Fluid dynamics of relativistic blast waves”, Phys. Fluids, 19 (1975), 1130–1138 | DOI

[13] Pan M., Sari R., “Self-similar solutions for relativistic shocks emerging from stars with polytropic envelopes”, Astrophys. Journ., 643 (2006), 416–422 ; astro-ph/0505176 | DOI

[14] Zhdanov V. I., Borshch M. S., “Ultra-relativistic expansion of ideal fluid with linear equation of state”, J. Phys. Stud., 9 (2005), 233–237; hep-ph/0508220

[15] Korkina M. P., Martynenko V. G., “Homogeneous symmetric model with extremely stiff equation of state”, Ukraiïn. Fiz. Zh., 21 (1976), 1191–1196 (in Russian) | MR

[16] Scherrer R. J., “Purely kinetic $k$-essence as unified dark matter”, Phys. Rev. Lett., 93 (2004), 011301, 5 pp., ages ; astro-ph/0402316 | DOI

[17] Chimento L. P., Lazkoz R., “Atypical $k$-essence cosmologies”, Phys. Rev. D, 71 (2005), 023505, 16 pp., ages ; astro-ph/0404494 | DOI | MR

[18] Sahni V., “Dark matter and dark energy”, Lect. Notes Phys., 653, Springer, Berlin, 2005, 141–180; astro-ph/0403324

[19] Copeland E. J., Sami M., Tsujikawa S., “Dynamics of dark energy”, Internat. J. Modern Phys. D, 15 (2006), 1753–1936 ; hep-th/0603057 | DOI | MR

[20] Lichnerowicz A., Relativistic hydrodynamics and magnetodynamics, Benjamin, New York, 1967 | Zbl

[21] Gorenstein M. I., Zhdanov V. I., Sinyukov Yu. M., “On scale-invariant solutions in the hydrodynamical theory of multiparticle production”, J. Exp. Theor. Phys., 74 (1978), 833–845 (in Russian)

[22] Gorenstein M. I., Sinyukov Yu. M., Zhdanov V. I., “On scaling solutions in the hydrodynamical theory of multiparticle production”, Phys. Lett. B, 71 (1977), 199–202 | DOI

[23] Grigoriev S. B., Korkina M. P., “Nonlinear scalar fields and Friedmann models”, Gravitation and Electromagnetism, ed. F. I. Fedorov, Izd-vo Universitetskoje, Minsk, 1987, 14–21 (in Russian)

[24] Babichev E., Mukhanov V., Vikman A., $k$-essence, superluminal propagation, causality and emergent geometry, arXiv:0708.0561 | MR