Symmetries and Invariant Differential Pairings
Symmetry, integrability and geometry: methods and applications, Tome 3 (2007) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The purpose of this article is to motivate the study of invariant, and especially conformally invariant, differential pairings. Since a general theory is lacking, this work merely presents some interesting examples of these pairings, explains how they naturally arise, and formulates various associated problems.
Keywords: conformal invariance; differential pairing; symmetry.
@article{SIGMA_2007_3_a112,
     author = {Michael G. Eastwood},
     title = {Symmetries and {Invariant} {Differential} {Pairings}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2007},
     volume = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a112/}
}
TY  - JOUR
AU  - Michael G. Eastwood
TI  - Symmetries and Invariant Differential Pairings
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2007
VL  - 3
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a112/
LA  - en
ID  - SIGMA_2007_3_a112
ER  - 
%0 Journal Article
%A Michael G. Eastwood
%T Symmetries and Invariant Differential Pairings
%J Symmetry, integrability and geometry: methods and applications
%D 2007
%V 3
%U http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a112/
%G en
%F SIGMA_2007_3_a112
Michael G. Eastwood. Symmetries and Invariant Differential Pairings. Symmetry, integrability and geometry: methods and applications, Tome 3 (2007). http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a112/

[1] Baston R. J., Eastwood M. G., “Invariant operators”, Twistors in Mathematics and Physics, London Math. Soc. Lecture Note Ser., 156, Cambridge University Press, 1990, 129–163 | MR

[2] Baird P., Wood J. C., Harmonic morphisms between Riemannian manifolds, Oxford University Press, 2003 | MR | Zbl

[3] Boyer C. P., Kalnins E. G., Miller W. Jr., “Symmetry and separation of variables for the Helmholtz and Laplace equations”, Nagoya Math. J., 60 (1976), 35–80 | MR | Zbl

[4] Branson T. P., “Differential operators canonically associated to a conformal structure”, Math. Scand., 57 (1985), 293–345 | MR | Zbl

[5] Branson T. P., Čap A., Eastwood M. G., Gover A. R., “Prolongations of geometric overdetermined systems”, Internat. J. Math., 17 (2006), 641–664 ; math.DG/0402100 | DOI | MR | Zbl

[6] Calderbank D. M. J., Diemer T., “Differential invariants and curved Bernstein–Gelfand–Gelfand sequences”, J. Reine Angew. Math., 537 (2001), 67–103 ; math.DG/0001158 | MR | Zbl

[7] Čap A., Slovák J., Souček V., “Invariant operators on manifolds with almost Hermitian symmetric structures. III. Standard operators”, Differential Geom. Appl., 12 (2000), 51–84 ; math.DG/9812023 | DOI | MR | Zbl

[8] Duval C., Ovsienko V., “Conformally equivariant quantum Hamiltonians”, Selecta Math., 7 (2001), 291–230 | DOI | MR

[9] Eastwood M. G., “Notes on conformal differential geometry”, Rendi. Circ. Mat. Palermo Suppl., 43 (1996), 57–76 | MR | Zbl

[10] Eastwood M. G., “Higher symmetries of the Laplacian”, Ann. Math., 161 (2005), 1645–1665 ; hep-th/0206233 | DOI | MR | Zbl

[11] Eastwood M. G., Leistner T., “Higher symmetries of the square of the Laplacian”, Symmetries and Overdetermined Systems of Partial Differential Equations,, IMA Volumes, 144, Springer Verlag, 2007, 319–338 ; math.DG/0610610 | MR

[12] Eastwood M. G., Rice J. W., “Conformally invariant differential operators on Minkowski space and their curved analogues”, Comm. Math. Phys., 109 (1987), 207–228 ; Erratum Comm. Math. Phys., 144 (1992), 213 | DOI | MR | Zbl | DOI | MR | Zbl

[13] Eastwood M. G., Somberg P., Souček V., Symmetries of the Dirac operator, in preparation

[14] Fegan H. D., “Conformally invariant first order differential operators”, Quart. J. Math., 27 (1976), 371–378 | DOI | MR | Zbl

[15] Fox D. J. F., “Projectively invariant star products”, Int. Math. Res. Not., 2005:9 (2005), 461–510 ; math.DG/0504596 | MR | Zbl

[16] Kroeske J., “Invariant differential pairings”, Acta Math. Univ. Comenian., 77:2 (2008), 215–244 ; math.DG/0703866 | MR | Zbl

[17] Miller W. Jr., Symmetry and separation of variables, Addison-Wesley, 1977 | MR | Zbl

[18] Penrose R., Rindler W., Spinors and space-time, Vol. 1, Cambridge University Press, 1984 | MR | Zbl

[19] Spencer D. C., “Overdetermined systems of linear partial differential equations”, Bull. Amer. Math. Soc., 75 (1969), 179–239 | DOI | MR | Zbl