@article{SIGMA_2007_3_a110,
author = {Andreas \v{C}ap and Vladim{\'\i}r Soucek},
title = {Curved {Casimir} {Operators} and the {BGG} {Machinery}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2007},
volume = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a110/}
}
Andreas Čap; Vladimír Soucek. Curved Casimir Operators and the BGG Machinery. Symmetry, integrability and geometry: methods and applications, Tome 3 (2007). http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a110/
[1] Bernstein I. N., Gelfand I. M., Gelfand S. I., “Differential operators on the base affine space and a study of $\frak g$-modules”, Lie Groups and their Representations, eds. I. M. Gelfand, Halsted, New York, 1975, 21–64 | MR
[2] Biquard O., Métriques d'Einstein asymptotiquement symétriques, Astérisque, 265, 2000 | MR | Zbl
[3] Calderbank D. M. J., Diemer T., “Differential invariants and curved Bernstein–Gelfand–Gelfand sequences”, J. Reine Angew. Math., 537 (2001), 67–103 ; math.DG/0001158 | MR | Zbl
[4] Čap A., “Two constructions with parabolic geometries”, Rend. Circ. Mat. Palermo Suppl. ser. II, 79 (2006), 11–37 ; math.DG/0504389 | MR | Zbl
[5] Čap A., Gover A. R., “Tractor calculi for parabolic geometries”, Trans. Amer. Math. Soc., 354 (2002), 1511–1548 | DOI | MR | Zbl
[6] Čap A., Slovák J., Souček V., “Bernstein–Gelfand–Gelfand sequences”, Ann. of Math., 154 (2001), 97–113 ; Preprint version math.DG/0001164 | DOI | MR | Zbl
[7] Čap A., Souček V., Subcomplexes in Curved BGG Sequences, math.DG/0508534
[8] Chern S. S., Moser J., “Real hypersurfaces in complex manifolds”, Acta Math., 133 (1974), 219–271 | DOI | MR
[9] Eastwood M. G., Rice J. W., “Conformally invariant differential operators on Minkowski space and their curved analogues”, Comm. Math. Phys., 109 (1987), 207–228 | DOI | MR | Zbl
[10] Gover A. R., Graham C. R., “CR invariant powers of the sub-Laplacian”, J. Reine Angew. Math., 583 (2005), 1–27 ; math.DG/0301092 | MR | Zbl
[11] Gover A. R., Hirachi K., “Conformally invariant powers of the Laplacian – a complete nonexistence theorem”, J. Amer. Math. Soc., 17 (2004), 389–405 ; math.DG/0304082 | DOI | MR | Zbl
[12] Graham C. R., “Conformally invariant powers of the Laplacian. II. Nonexistence”, J. London Math. Soc., 46 (1992), 566–576 | DOI | MR | Zbl
[13] Graham C. R., Jenne R., Mason L. J., Sparling G. A., “Conformally invariant powers of the Laplacian. I. Existence”, J. London Math. Soc., 46 (1992), 557–565 | DOI | MR | Zbl
[14] Kostant B., “Lie algebra cohomology and the generalized Borel–Weil theorem”, Ann. of Math., 74 (1961), 329–387 | DOI | MR | Zbl
[15] Lepowsky J., “A generalization of the Bernstein–Gelfand–Gelfand resolution”, J. Algebra, 49 (1977), 496–511 | DOI | MR | Zbl
[16] Sharpe R. W., Differential geometry, Graduate Texts in Mathematics, 166, Springer-Verlag, 1997 | MR | Zbl
[17] Tanaka N., “On the equivalence problem associated with simple graded Lie algebras”, Hokkaido Math. J., 8 (1979), 23–84 | MR | Zbl
[18] Yamaguchi K., “Differential systems associated with simple graded Lie algebras”, Adv. Stud. Pure Math., 22 (1993), 413–494 | MR | Zbl