Curved Casimir Operators and the BGG Machinery
Symmetry, integrability and geometry: methods and applications, Tome 3 (2007) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We prove that the Casimir operator acting on sections of a homogeneous vector bundle over a generalized flag manifold naturally extends to an invariant differential operator on arbitrary parabolic geometries. We study some properties of the resulting invariant operators and compute their action on various special types of natural bundles. As a first application, we give a very general construction of splitting operators for parabolic geometries. Then we discuss the curved Casimir operators on differential forms with values in a tractor bundle, which nicely relates to the machinery of BGG sequences. This also gives a nice interpretation of the resolution of a finite dimensional representation by (spaces of smooth vectors in) principal series representations provided by a BGG sequence.
Keywords: induced representation; parabolic geometry; invariant differential operator; Casimir operator; tractor bundle; BGG sequence.
@article{SIGMA_2007_3_a110,
     author = {Andreas \v{C}ap and Vladim{\'\i}r Soucek},
     title = {Curved {Casimir} {Operators} and the {BGG} {Machinery}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2007},
     volume = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a110/}
}
TY  - JOUR
AU  - Andreas Čap
AU  - Vladimír Soucek
TI  - Curved Casimir Operators and the BGG Machinery
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2007
VL  - 3
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a110/
LA  - en
ID  - SIGMA_2007_3_a110
ER  - 
%0 Journal Article
%A Andreas Čap
%A Vladimír Soucek
%T Curved Casimir Operators and the BGG Machinery
%J Symmetry, integrability and geometry: methods and applications
%D 2007
%V 3
%U http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a110/
%G en
%F SIGMA_2007_3_a110
Andreas Čap; Vladimír Soucek. Curved Casimir Operators and the BGG Machinery. Symmetry, integrability and geometry: methods and applications, Tome 3 (2007). http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a110/

[1] Bernstein I. N., Gelfand I. M., Gelfand S. I., “Differential operators on the base affine space and a study of $\frak g$-modules”, Lie Groups and their Representations, eds. I. M. Gelfand, Halsted, New York, 1975, 21–64 | MR

[2] Biquard O., Métriques d'Einstein asymptotiquement symétriques, Astérisque, 265, 2000 | MR | Zbl

[3] Calderbank D. M. J., Diemer T., “Differential invariants and curved Bernstein–Gelfand–Gelfand sequences”, J. Reine Angew. Math., 537 (2001), 67–103 ; math.DG/0001158 | MR | Zbl

[4] Čap A., “Two constructions with parabolic geometries”, Rend. Circ. Mat. Palermo Suppl. ser. II, 79 (2006), 11–37 ; math.DG/0504389 | MR | Zbl

[5] Čap A., Gover A. R., “Tractor calculi for parabolic geometries”, Trans. Amer. Math. Soc., 354 (2002), 1511–1548 | DOI | MR | Zbl

[6] Čap A., Slovák J., Souček V., “Bernstein–Gelfand–Gelfand sequences”, Ann. of Math., 154 (2001), 97–113 ; Preprint version math.DG/0001164 | DOI | MR | Zbl

[7] Čap A., Souček V., Subcomplexes in Curved BGG Sequences, math.DG/0508534

[8] Chern S. S., Moser J., “Real hypersurfaces in complex manifolds”, Acta Math., 133 (1974), 219–271 | DOI | MR

[9] Eastwood M. G., Rice J. W., “Conformally invariant differential operators on Minkowski space and their curved analogues”, Comm. Math. Phys., 109 (1987), 207–228 | DOI | MR | Zbl

[10] Gover A. R., Graham C. R., “CR invariant powers of the sub-Laplacian”, J. Reine Angew. Math., 583 (2005), 1–27 ; math.DG/0301092 | MR | Zbl

[11] Gover A. R., Hirachi K., “Conformally invariant powers of the Laplacian – a complete nonexistence theorem”, J. Amer. Math. Soc., 17 (2004), 389–405 ; math.DG/0304082 | DOI | MR | Zbl

[12] Graham C. R., “Conformally invariant powers of the Laplacian. II. Nonexistence”, J. London Math. Soc., 46 (1992), 566–576 | DOI | MR | Zbl

[13] Graham C. R., Jenne R., Mason L. J., Sparling G. A., “Conformally invariant powers of the Laplacian. I. Existence”, J. London Math. Soc., 46 (1992), 557–565 | DOI | MR | Zbl

[14] Kostant B., “Lie algebra cohomology and the generalized Borel–Weil theorem”, Ann. of Math., 74 (1961), 329–387 | DOI | MR | Zbl

[15] Lepowsky J., “A generalization of the Bernstein–Gelfand–Gelfand resolution”, J. Algebra, 49 (1977), 496–511 | DOI | MR | Zbl

[16] Sharpe R. W., Differential geometry, Graduate Texts in Mathematics, 166, Springer-Verlag, 1997 | MR | Zbl

[17] Tanaka N., “On the equivalence problem associated with simple graded Lie algebras”, Hokkaido Math. J., 8 (1979), 23–84 | MR | Zbl

[18] Yamaguchi K., “Differential systems associated with simple graded Lie algebras”, Adv. Stud. Pure Math., 22 (1993), 413–494 | MR | Zbl