@article{SIGMA_2007_3_a11,
author = {Harald Dorn and George Jorjadze},
title = {Boundary {Liouville} {Theory:} {Hamiltonian} {Description} and {Quantization}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2007},
volume = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a11/}
}
Harald Dorn; George Jorjadze. Boundary Liouville Theory: Hamiltonian Description and Quantization. Symmetry, integrability and geometry: methods and applications, Tome 3 (2007). http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a11/
[1] Zamolodchikov A. B., Zamolodchikov Al. B., Liouville field theory on a pseudosphere, hep-th/0101152
[2] Fateev V., Zamolodchikov A. B., Zamolodchikov Al. B., Boundary Liouville field theory. I. Boundary state and boundary two-point function, hep-th/0001012
[3] Teschner J., Remarks on Liouville theory with boundary, hep-th/0009138
[4] Martinec E. J., The annular report on non-critical string theory, hep-th/0305148
[5] Gervais J. L., Neveu A., “The dual string spectrum in Polyakov's quantization. I”, Nuclear Phys. B, 199 (1982), 59–76 | DOI | MR
[6] Gervais J. L., Neveu A., “Dual string spectrum in Polyakov's quantization. II. Mode separation”, Nuclear Phys. B, 209 (1982), 125–145 | DOI | MR
[7] Gervais J. L., Neveu A., “Novel triangle relation and absence of tachyons in Liouville string field theory”, Nuclear Phys. B, 238 (1984), 125–141 | DOI | MR
[8] Gervais J. L., Neveu A., “Green functions and scattering amplitudes in Liouville string field theory. I”, Nuclear Phys. B, 238 (1984), 396–406 | DOI | MR
[9] Cremmer E., Gervais J. L., “The quantum strip: Liouville theory for open strings”, Comm. Math. Phys., 144 (1992), 279–302 | DOI | MR
[10] Balog J., Feher L., Palla L., “Coadjoint orbits of the Virasoro algebra and the global Liouville equation”, Internat. J. Modern Phys. A, 13 (1998), 315–362 ; hep-th/9703045 | DOI | MR | Zbl
[11] Curtright T. L., Thorn C. B., “Conformally invariant quantization of the Liouville theory”, Phys. Rev. Lett., 48 (1982), 1309–1313 | DOI | MR
[12] Braaten E, Curtright T. L., Thorn C. B., “An exact operator solution of the quantum Liouville field theory”, Ann. Physics, 147 (1983), 365–416 | DOI | MR | Zbl
[13] Otto H. J., Weigt G., “Construction of exponential Liouville field operators for closed string models”, Z. Phys. C, 31 (1986), 219–228 | DOI | MR
[14] Teschner J., “Liouville theory revisited”, Classical Quantum Gravity, 18 (2001), 153–222 ; hep-th/0104158 | DOI | MR
[15] Jorjadze G., Weigt G., “Poisson structure and Moyal quantisation of the Liouville theory”, Nuclear Phys. B, 619 (2001), 232–256 ; hep-th/0105306 | DOI | MR | Zbl
[16] Alekseev A., Shatashvili S. L., “From geometric quantization to conformal field theory”, Comm. Math. Phys., 128 (1990), 197–212 | DOI | MR | Zbl
[17] Jorjadze G., Weigt G., “Correlation functions and vertex operators of Liouville theory”, Phys. Lett. B, 581 (2004), 133–140 ; hep-th/0311202 | DOI | MR
[18] Nakayama Y., “Liouville field theory: A decade after the revolution”, Internat. J. Modern Phys. A, 19 (2004), 2771–2930 ; hep-th/0402009 | DOI | MR | Zbl
[19] Ford C., Jorjadze G., “A causal algebra for Liouville exponentials”, Classical Quantum Gravity, 23 (2006), 6007–6014 ; hep-th/0512018 | DOI | MR | Zbl