Boundary Liouville Theory: Hamiltonian Description and Quantization
Symmetry, integrability and geometry: methods and applications, Tome 3 (2007) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper is devoted to the Hamiltonian treatment of classical and quantum properties of Liouville field theory on a timelike strip in $2d$ Minkowski space. We give a complete description of classical solutions regular in the interior of the strip and obeying constant conformally invariant conditions on both boundaries. Depending on the values of the two boundary parameters these solutions may have different monodromy properties and are related to bound or scattering states. By Bohr–Sommerfeld quantization we find the quasiclassical discrete energy spectrum for the bound states in agreement with the corresponding limit of spectral data obtained previously by conformal bootstrap methods in Euclidean space. The full quantum version of the special vertex operator $e^{-\varphi }$ in terms of free field exponentials is constructed in the hyperbolic sector.
Keywords: Liouville theory; strings and branes; $2d$ conformal group; boundary conditions; symplectic structure; canonical quantization.
@article{SIGMA_2007_3_a11,
     author = {Harald Dorn and George Jorjadze},
     title = {Boundary {Liouville} {Theory:} {Hamiltonian} {Description} and {Quantization}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2007},
     volume = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a11/}
}
TY  - JOUR
AU  - Harald Dorn
AU  - George Jorjadze
TI  - Boundary Liouville Theory: Hamiltonian Description and Quantization
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2007
VL  - 3
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a11/
LA  - en
ID  - SIGMA_2007_3_a11
ER  - 
%0 Journal Article
%A Harald Dorn
%A George Jorjadze
%T Boundary Liouville Theory: Hamiltonian Description and Quantization
%J Symmetry, integrability and geometry: methods and applications
%D 2007
%V 3
%U http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a11/
%G en
%F SIGMA_2007_3_a11
Harald Dorn; George Jorjadze. Boundary Liouville Theory: Hamiltonian Description and Quantization. Symmetry, integrability and geometry: methods and applications, Tome 3 (2007). http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a11/

[1] Zamolodchikov A. B., Zamolodchikov Al. B., Liouville field theory on a pseudosphere, hep-th/0101152

[2] Fateev V., Zamolodchikov A. B., Zamolodchikov Al. B., Boundary Liouville field theory. I. Boundary state and boundary two-point function, hep-th/0001012

[3] Teschner J., Remarks on Liouville theory with boundary, hep-th/0009138

[4] Martinec E. J., The annular report on non-critical string theory, hep-th/0305148

[5] Gervais J. L., Neveu A., “The dual string spectrum in Polyakov's quantization. I”, Nuclear Phys. B, 199 (1982), 59–76 | DOI | MR

[6] Gervais J. L., Neveu A., “Dual string spectrum in Polyakov's quantization. II. Mode separation”, Nuclear Phys. B, 209 (1982), 125–145 | DOI | MR

[7] Gervais J. L., Neveu A., “Novel triangle relation and absence of tachyons in Liouville string field theory”, Nuclear Phys. B, 238 (1984), 125–141 | DOI | MR

[8] Gervais J. L., Neveu A., “Green functions and scattering amplitudes in Liouville string field theory. I”, Nuclear Phys. B, 238 (1984), 396–406 | DOI | MR

[9] Cremmer E., Gervais J. L., “The quantum strip: Liouville theory for open strings”, Comm. Math. Phys., 144 (1992), 279–302 | DOI | MR

[10] Balog J., Feher L., Palla L., “Coadjoint orbits of the Virasoro algebra and the global Liouville equation”, Internat. J. Modern Phys. A, 13 (1998), 315–362 ; hep-th/9703045 | DOI | MR | Zbl

[11] Curtright T. L., Thorn C. B., “Conformally invariant quantization of the Liouville theory”, Phys. Rev. Lett., 48 (1982), 1309–1313 | DOI | MR

[12] Braaten E, Curtright T. L., Thorn C. B., “An exact operator solution of the quantum Liouville field theory”, Ann. Physics, 147 (1983), 365–416 | DOI | MR | Zbl

[13] Otto H. J., Weigt G., “Construction of exponential Liouville field operators for closed string models”, Z. Phys. C, 31 (1986), 219–228 | DOI | MR

[14] Teschner J., “Liouville theory revisited”, Classical Quantum Gravity, 18 (2001), 153–222 ; hep-th/0104158 | DOI | MR

[15] Jorjadze G., Weigt G., “Poisson structure and Moyal quantisation of the Liouville theory”, Nuclear Phys. B, 619 (2001), 232–256 ; hep-th/0105306 | DOI | MR | Zbl

[16] Alekseev A., Shatashvili S. L., “From geometric quantization to conformal field theory”, Comm. Math. Phys., 128 (1990), 197–212 | DOI | MR | Zbl

[17] Jorjadze G., Weigt G., “Correlation functions and vertex operators of Liouville theory”, Phys. Lett. B, 581 (2004), 133–140 ; hep-th/0311202 | DOI | MR

[18] Nakayama Y., “Liouville field theory: A decade after the revolution”, Internat. J. Modern Phys. A, 19 (2004), 2771–2930 ; hep-th/0402009 | DOI | MR | Zbl

[19] Ford C., Jorjadze G., “A causal algebra for Liouville exponentials”, Classical Quantum Gravity, 23 (2006), 6007–6014 ; hep-th/0512018 | DOI | MR | Zbl