Alternative Method for Determining the Feynman Propagator of a Non-Relativistic Quantum Mechanical Problem
Symmetry, integrability and geometry: methods and applications, Tome 3 (2007)
Cet article a éte moissonné depuis la source Math-Net.Ru
A direct procedure for determining the propagator associated with a quantum mechanical problem was given by the Path Integration Procedure of Feynman. The Green function, which is the Fourier Transform with respect to the time variable of the propagator, can be derived later. In our approach, with the help of a Laplace transform, a direct way to get the energy dependent Green function is presented, and the propagator can be obtained later with an inverse Laplace transform. The method is illustrated through simple one dimensional examples and for time independent potentials, though it can be generalized to the derivation of more complicated propagators.
Keywords:
propagator; Green functions; harmonic oscillator.
@article{SIGMA_2007_3_a109,
author = {Marcos Moshinsky and Emerson Sadurn{\'\i} and Adolfo del Campo},
title = {Alternative {Method} for {Determining} the {Feynman} {Propagator} of {a~Non-Relativistic} {Quantum} {Mechanical} {Problem}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2007},
volume = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a109/}
}
TY - JOUR AU - Marcos Moshinsky AU - Emerson Sadurní AU - Adolfo del Campo TI - Alternative Method for Determining the Feynman Propagator of a Non-Relativistic Quantum Mechanical Problem JO - Symmetry, integrability and geometry: methods and applications PY - 2007 VL - 3 UR - http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a109/ LA - en ID - SIGMA_2007_3_a109 ER -
%0 Journal Article %A Marcos Moshinsky %A Emerson Sadurní %A Adolfo del Campo %T Alternative Method for Determining the Feynman Propagator of a Non-Relativistic Quantum Mechanical Problem %J Symmetry, integrability and geometry: methods and applications %D 2007 %V 3 %U http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a109/ %G en %F SIGMA_2007_3_a109
Marcos Moshinsky; Emerson Sadurní; Adolfo del Campo. Alternative Method for Determining the Feynman Propagator of a Non-Relativistic Quantum Mechanical Problem. Symmetry, integrability and geometry: methods and applications, Tome 3 (2007). http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a109/
[1] Grosche C., Steiner F., Handbook of Feynman path integrals, Springer Tracts in Modern Physics, 145, Springer, Berlin, 1998 | MR | Zbl
[2] Jaeger J. C., An introduction to Laplace transform, Methuen, London, 1965
[3] Gradshteyn I., Ryzhik I., Table of integrals, series and products, Academic Press, 1965
[4] Sakurai J. J., Modern quantum mechanics, Addison-Wesley, 1994
[5] Holstein B. R., “The linear potential propagator”, Amer. J. Phys., 65 (1997), 414–418 ; Holstein B. R., “The harmonic oscillator propagator”, Amer. J. Phys., 66 (1998), 583–589 | DOI | DOI | MR
[6] Cohen S. M., “Path integral for the quantum harmonic oscillator using elementary m ethods”, Amer. J. Phys., 66 (1998), 537–540 | DOI