@article{SIGMA_2007_3_a107,
author = {Martin J{\'\i}lek},
title = {Straight {Quantum} {Waveguide} with {Robin} {Boundary} {Conditions}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2007},
volume = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a107/}
}
Martin Jílek. Straight Quantum Waveguide with Robin Boundary Conditions. Symmetry, integrability and geometry: methods and applications, Tome 3 (2007). http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a107/
[1] Adams R. A., Sobolev spaces, Academic Press, New York, 1975 | MR | Zbl
[2] Bendali A., Lemrabet K., “The effect of a thin coating on the scattering of a time-harmonic wave for the Helmholtz equation”, SIAM J. Appl. Math., 56 (1996), 1664–1693 | DOI | MR | Zbl
[3] Borisov D., Exner P., Gadyl'shin R., Krejčiřík D., “Bound states in weakly deformed strips and layers”, Ann. Henri Poincaré, 2 (2001), 553–572 ; math-ph/0011052 | DOI | MR | Zbl
[4] Borisov D., Krejčiřík D., PT-symmetric waveguide, arXiv:0707.3039
[5] Bulla W., Gesztesy F., Renger W., Simon B., “Weakly coupled boundstates in quantum waveguides”, Proc. Amer. Math. Soc., 127 (1997), 1487–1495 | DOI | MR
[6] Chenaud B., Duclos P., Freitas P., Krejčiřík D., “Geometrically induced discrete spectrum in curved tubes”, Differential Geom. Appl., 23 (2005), 95–105 ; math.SP/0412132 | DOI | MR | Zbl
[7] Davies E. B., Spectral theory and differential operators, Camb. Univ. Press, Cambridge, 1995 | MR
[8] Dermenjian Y., Durand M., Iftimie V., “Spectral analysis of an acoustic multistratified perturbed cylinder”, Comm. Partial Differential Equations, 23 (1998), 141–169 | MR | Zbl
[9] Dittrich J., Kříž J., “Bound states in straight quantum waveguides with combined boundary conditions”, J. Math. Phys., 43 (2002), 3892–3915 ; math-ph/0112018 | DOI | MR | Zbl
[10] Dittrich J., Kříž J., “Curved planar quantum wires with Dirichlet and Neumann boundary conditions”, J. Phys. A: Math. Gen., 35 (2002), L269–L275 ; math-ph/0203007 | DOI | MR | Zbl
[11] Duclos P., Exner P., “Curvature-induced bound states in quantum waveguides in two and three dimensions”, Rev. Math. Phys., 7 (1995), 73–102 | DOI | MR | Zbl
[12] Engquist B., Nedelec J. C., Effective boundary conditions for electro-magnetic scattering in thin layers, Technical Report 278, Ecole Polytechnique-CMAP, France, 1993
[13] Evans L. C., Partial differential equations, American Mathematical Society, Providence, 1998 | MR
[14] Exner P., Krejčiřík D., “Quantum waveguides with a lateral semitransparent barrier: spectral and scattering properties”, J. Phys. A: Math. Gen., 32 (1999), 4475–4494 ; cond-mat/9904379 | DOI | MR | Zbl
[15] Exner P., Šeba P., “Bound states in curved quantum waveguides”, J. Math. Phys., 30 (1989), 2574–2580 | DOI | MR | Zbl
[16] Exner P., Šeba P., Tater M., Vaněk D., “Bound states and scattering in quantum waveguides coupled laterally through a boundary window”, J. Math. Phys., 37 (1996), 4867–4887 ; cond-mat/9512088 | DOI | MR | Zbl
[17] Freitas P., Krejčiřík D., “Waveguides with combined Dirichlet and Robin boundary conditions”, Math. Phys. Anal. Geom., 9 (2006), 335–352 ; math-ph/0701075 | DOI | MR | Zbl
[18] Goldstone J., Jaffe R. L., “Bound states in twisting tubes”, Phys. Rev. B, 45 (1992), 14100–14107 | DOI
[19] Kato T., Perturbation theory for linear operators, Springer-Verlag, Berlin, 1966 | MR
[20] Kovařík H., Krejčiřík D., “A Hardy inequality in a twisted Dirichlet–Neumann waveguide”, Math. Nachr., 281:8 (2008), 1159–1168 ; math-ph/0603076 | DOI | MR | Zbl
[21] Krejčiřík D., Kříž J., “On the spectrum of curved planar waveguides”, Publ. RIMS Kyoto Univ., 41 (2005), 757–791 | DOI | MR | Zbl
[22] Lin K., Jaffe R. L., “Bound states and quantum resonances in quantum wires with circular bends”, Phys. Rev. B, 54 (1996), 5750–5762 | DOI
[23] Londergan J. T., Carini J .P., Murdock D. P., Binding and scattering in two-dimensional systems, Lect. Note in Phys., 60, Springer, Berlin, 1999
[24] Olendski O., Mikhailovska L., “Localized-mode evolution in a curved planar waveguide with combined Dirichlet and Neumann boundary conditions”, Phys. Rev. E, 67 (2003), 056625, 11 pp., ages | DOI | MR
[25] Reed M., Simon B., Methods of modern mathematical physics. IV. Analysis of operators, Academic Press, New York, 1978 | MR | Zbl