Singular Potentials in Quantum Mechanics and Ambiguity in the Self-Adjoint Hamiltonian
Symmetry, integrability and geometry: methods and applications, Tome 3 (2007) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For a class of singular potentials, including the Coulomb potential (in three and less dimensions) and $V(x)=g/x^2$ with the coefficient $g$ in a certain range ($x$ being a space coordinate in one or more dimensions), the corresponding Schrödinger operator is not automatically self-adjoint on its natural domain. Such operators admit more than one self-adjoint domain, and the spectrum and all physical consequences depend seriously on the self-adjoint version chosen. The article discusses how the self-adjoint domains can be identified in terms of a boundary condition for the asymptotic behaviour of the wave functions around the singularity, and what physical differences emerge for different self-adjoint versions of the Hamiltonian. The paper reviews and interprets known results, with the intention to provide a practical guide for all those interested in how to approach these ambiguous situations.
Keywords: quantum mechanics; singular potential; self-adjointness; boundary condition.
@article{SIGMA_2007_3_a106,
     author = {Tam\'aas F\"ul\"op},
     title = {Singular {Potentials} in {Quantum} {Mechanics} and {Ambiguity} in the {Self-Adjoint} {Hamiltonian}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2007},
     volume = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a106/}
}
TY  - JOUR
AU  - Tamáas Fülöp
TI  - Singular Potentials in Quantum Mechanics and Ambiguity in the Self-Adjoint Hamiltonian
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2007
VL  - 3
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a106/
LA  - en
ID  - SIGMA_2007_3_a106
ER  - 
%0 Journal Article
%A Tamáas Fülöp
%T Singular Potentials in Quantum Mechanics and Ambiguity in the Self-Adjoint Hamiltonian
%J Symmetry, integrability and geometry: methods and applications
%D 2007
%V 3
%U http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a106/
%G en
%F SIGMA_2007_3_a106
Tamáas Fülöp. Singular Potentials in Quantum Mechanics and Ambiguity in the Self-Adjoint Hamiltonian. Symmetry, integrability and geometry: methods and applications, Tome 3 (2007). http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a106/

[1] Gordeyev A. N., Chhajlany S. C., “One-dimensional hydrogen atom: a singular potential in quantum mechanics”, J. Phys. A: Math. Gen., 30 (1997), 6893–6909 | DOI | MR | Zbl

[2] Reed M., Simon B., Methods of modern mathematical physics I. Functional analysis, revised and enlarged edition, Academic Press, New York, 1980 | MR

[3] Reed M., Simon B., Methods of modern mathematical physics II. Fourier analysis, self-adjointness, Academic Press, New York, 1975 | MR | Zbl

[4] Richtmyer R. D., Principles of advanced mathematical physics, Vol. I, Springer-Verlag, 1978 | MR | Zbl

[5] Akhiezer N. I., Glazman I. M., Theory of linear operators in Hilbert space, Pitman, New York, 1981 | Zbl

[6] Gorbachuk V. I., Gorbachuk M. L., Boundary value problems for operator differential equations, Kluwer, 1991 | MR | Zbl

[7] Matolcsi T., Spacetime without reference frames, Akadémiai Kiadó, Budapest, 1993 | MR | Zbl

[8] Fülöp T., The physical role of boundary conditions in quantum mechanics, PhD dissertation, The University of Tokyo, Japan, 2006 | Zbl

[9] Fülöp T., Cheon T., Tsutsui I., “Classical aspects of quantum walls in one dimension”, Phys. Rev. A, 66:5 (2002), 052102, 10 pp., ages ; quant-ph/0111057 | DOI

[10] Tsutsui I., Fülöp T., Cheon T., “Duality and anholonomy in the quantum mechanics of 1D contact interactions”, J. Phys. Soc. Japan, 69 (2000), 3473–3476 ; quant-ph/0003069 | DOI | MR | Zbl

[11] Cheon T., Fülöp T., Tsutsui I., “Symmetry, duality and anholonomy of point interactions in one dimension”, Ann. Phys. (N.Y.), 294 (2001), 1–23 ; quant-ph/0008123 | DOI | MR | Zbl

[12] Tsutsui I., Fülöp T., Cheon T., “Möbius structure of the spectral space of Schrödinger operators with point interaction”, J. Math. Phys., 42 (2001), 5687–5697 ; quant-ph/0105066 | DOI | MR | Zbl

[13] Albeverio S., Gesztesy F., Høegh-Krohn R., Holden H., Solvable models in quantum mechanics, 2nd ed., with a remarkable Appendix written by P. Exner, AMS Chelsea Publishing, Providence, Rhode Island, 2005 | MR

[14] Dittrich J., Exner P., “Tunneling through a singular potential barrier”, J. Math. Phys., 26 (1985), 2000–2008 | DOI | MR | Zbl

[15] Fehér L., Fülöp T., Tsutsui I., “Inequivalent quantizations of the three-particle Calogero model constructed by separation of variables”, Nuclear Phys. B, 715 (2005), 713–757 ; math-ph/0412095 | DOI | MR | Zbl

[16] Cheon T., Tsutsui I., Fülöp T., “Quantum abacus”, Phys. Lett. A, 330 (2004), 338–342 ; quant-ph/0404039 | DOI | MR | Zbl

[17] Gitman D., Tyutin I., Voronov B., Self-adjoint extensions as a quantization problem, Progr. Math. Phys., Birkhäuser, Basel, 2006

[18] Frank W. M., Land D. J., Spector R. M., “Singular potentials”, Rev. Modern Phys., 43 (1971), 36–98 | DOI | MR

[19] Krall A. M., “Boundary values for an eigenvalue problem with a singular potential”, J. Differential Equations, 45 (1982), 128–138 | DOI | MR | Zbl

[20] Esteve J. G., “Origin of the anomalies: The modified Heisenberg equation”, Phys. Rev. D, 66 (2002), 125013, 4 pp., ages ; hep-th/0207164 | DOI

[21] Coon S. A., Holstein B. R., “Anomalies in quantum mechanics: the $1/r^2$ potential”, Amer. J. Phys., 70 (2002), 513–519 ; quant-ph/0202091 | DOI | MR

[22] Essim A. M., Griffiths D. J., “Quantum mechanics of the $1/x^2$ potential”, Amer. J. Phys., 74 (2006), 109–117 | DOI