Biorthogonal Expansion of Non-Symmetric Jack Functions
Symmetry, integrability and geometry: methods and applications, Tome 3 (2007) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We find a biorthogonal expansion of the Cayley transform of the non-symmetric Jack functions in terms of the non-symmetric Jack polynomials, the coefficients being Meixner–Pollaczek type polynomials. This is done by computing the Cherednik–Opdam transform of the non-symmetric Jack polynomials multiplied by the exponential function.
Keywords: non-symmetric Jack polynomials and functions; biorthogonal expansion; Laplace transform; Cherednik–Opdam transform.
@article{SIGMA_2007_3_a105,
     author = {Siddhartha Sahi and G. Zhang},
     title = {Biorthogonal {Expansion} of {Non-Symmetric} {Jack} {Functions}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2007},
     volume = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a105/}
}
TY  - JOUR
AU  - Siddhartha Sahi
AU  - G. Zhang
TI  - Biorthogonal Expansion of Non-Symmetric Jack Functions
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2007
VL  - 3
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a105/
LA  - en
ID  - SIGMA_2007_3_a105
ER  - 
%0 Journal Article
%A Siddhartha Sahi
%A G. Zhang
%T Biorthogonal Expansion of Non-Symmetric Jack Functions
%J Symmetry, integrability and geometry: methods and applications
%D 2007
%V 3
%U http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a105/
%G en
%F SIGMA_2007_3_a105
Siddhartha Sahi; G. Zhang. Biorthogonal Expansion of Non-Symmetric Jack Functions. Symmetry, integrability and geometry: methods and applications, Tome 3 (2007). http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a105/

[1] Baker T. H., Forrester P. J., “The Calogero–Sutherland model and generalized classical polynomials”, Comm. Math. Phys., 188 (1997), 175–216 ; solv-int/9608004 | DOI | MR | Zbl

[2] Baker T. H., Forrester P. J., “Non-symmetric Jack polynomials and intergral kernels”, Duke Math. J., 95 (1998), 1–50 ; q-alg/9612003 | DOI | MR | Zbl

[3] Davidson M., Olafsson G., Zhang G., “Segal–Bargmann transform on Hermitian symmetric spaces”, J. Funct. Anal., 204 (2003), 157–195 ; math.RT/0206275 | DOI | MR | Zbl

[4] Faraut J., Koranyi A., Analysis on symmetric cones, Oxford University Press, Oxford, 1994 | MR | Zbl

[5] Knop F., Sahi S., “A recursion and a combinatorial formula for Jack polynomials”, Invent. Math., 128 (1997), 9–22 ; q-alg/9610016 | DOI | MR | Zbl

[6] Koekoek R., Swarttouw R. F., The Askey-scheme of hypergeometric orthogonal polynomials and its $q$-analogue, Math. Report 98-17, Delft Univ. of Technology, 1998; math.CA/9602214

[7] Macdonald I. G., Symmetric functions and Hall polynomials, Clarendon Press, Oxford, 1995 | MR | Zbl

[8] Macdonald I. G., Hypergeometric functions, Lecture notes, unpublished

[9] Peng L., Zhang G., “Nonsymmetric Jacobi and Wilson-type polynomials”, Int. Math. Res. Not., 2006 (2006), Art. ID. 21630, 13 pp., ages ; math.CA/0511709 | DOI | MR

[10] Opdam E. M., “Harmonic analysis for certain representations of graded Hecke algebras”, Acta Math., 175 (1995), 75–121 | DOI | MR | Zbl

[11] Sahi S., “A new scalar product for nonsymmetric Jack polynomials”, Int. Math. Res. Not., 20 (1996), 997–1004 ; q-alg/9608013 | DOI | MR | Zbl

[12] Sahi S., “The binomial formula for nonsymmetric Macdonald polynomials”, Duke Math. J., 94 (1998), 465–477 ; q-alg/9703024 | DOI | MR | Zbl

[13] Sahi S., “The spectrum of certain invariant differential operators associated to a Hermitian symmetric space”, Lie Theory and Geometry, Progr. Math., 123, Birkhäuser, Boston MA, 1994, 569–576 | MR | Zbl

[14] Zhang G., “Branching coefficients of holomorphic representations and Segal–Bargmann transform”, J. Funct. Anal., 195 (2002), 306–349 ; math.RT/0110212 | DOI | MR | Zbl

[15] Zhang G., “Spherical transform and Jacobi polynomials on root systems of type BC”, Int. Math. Res. Not., 51 (2005), 3169–3190 ; math.RT/0503735 | DOI | MR