@article{SIGMA_2007_3_a105,
author = {Siddhartha Sahi and G. Zhang},
title = {Biorthogonal {Expansion} of {Non-Symmetric} {Jack} {Functions}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2007},
volume = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a105/}
}
Siddhartha Sahi; G. Zhang. Biorthogonal Expansion of Non-Symmetric Jack Functions. Symmetry, integrability and geometry: methods and applications, Tome 3 (2007). http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a105/
[1] Baker T. H., Forrester P. J., “The Calogero–Sutherland model and generalized classical polynomials”, Comm. Math. Phys., 188 (1997), 175–216 ; solv-int/9608004 | DOI | MR | Zbl
[2] Baker T. H., Forrester P. J., “Non-symmetric Jack polynomials and intergral kernels”, Duke Math. J., 95 (1998), 1–50 ; q-alg/9612003 | DOI | MR | Zbl
[3] Davidson M., Olafsson G., Zhang G., “Segal–Bargmann transform on Hermitian symmetric spaces”, J. Funct. Anal., 204 (2003), 157–195 ; math.RT/0206275 | DOI | MR | Zbl
[4] Faraut J., Koranyi A., Analysis on symmetric cones, Oxford University Press, Oxford, 1994 | MR | Zbl
[5] Knop F., Sahi S., “A recursion and a combinatorial formula for Jack polynomials”, Invent. Math., 128 (1997), 9–22 ; q-alg/9610016 | DOI | MR | Zbl
[6] Koekoek R., Swarttouw R. F., The Askey-scheme of hypergeometric orthogonal polynomials and its $q$-analogue, Math. Report 98-17, Delft Univ. of Technology, 1998; math.CA/9602214
[7] Macdonald I. G., Symmetric functions and Hall polynomials, Clarendon Press, Oxford, 1995 | MR | Zbl
[8] Macdonald I. G., Hypergeometric functions, Lecture notes, unpublished
[9] Peng L., Zhang G., “Nonsymmetric Jacobi and Wilson-type polynomials”, Int. Math. Res. Not., 2006 (2006), Art. ID. 21630, 13 pp., ages ; math.CA/0511709 | DOI | MR
[10] Opdam E. M., “Harmonic analysis for certain representations of graded Hecke algebras”, Acta Math., 175 (1995), 75–121 | DOI | MR | Zbl
[11] Sahi S., “A new scalar product for nonsymmetric Jack polynomials”, Int. Math. Res. Not., 20 (1996), 997–1004 ; q-alg/9608013 | DOI | MR | Zbl
[12] Sahi S., “The binomial formula for nonsymmetric Macdonald polynomials”, Duke Math. J., 94 (1998), 465–477 ; q-alg/9703024 | DOI | MR | Zbl
[13] Sahi S., “The spectrum of certain invariant differential operators associated to a Hermitian symmetric space”, Lie Theory and Geometry, Progr. Math., 123, Birkhäuser, Boston MA, 1994, 569–576 | MR | Zbl
[14] Zhang G., “Branching coefficients of holomorphic representations and Segal–Bargmann transform”, J. Funct. Anal., 195 (2002), 306–349 ; math.RT/0110212 | DOI | MR | Zbl
[15] Zhang G., “Spherical transform and Jacobi polynomials on root systems of type BC”, Int. Math. Res. Not., 51 (2005), 3169–3190 ; math.RT/0503735 | DOI | MR