@article{SIGMA_2007_3_a104,
author = {Mikhail V. Altaisky},
title = {Wavelet-Based {Quantum} {Field} {Theory}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2007},
volume = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a104/}
}
Mikhail V. Altaisky. Wavelet-Based Quantum Field Theory. Symmetry, integrability and geometry: methods and applications, Tome 3 (2007). http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a104/
[1] Zinn-Justin J., Quantum field theory and critical phenomena, Oxford University Press, 1989 | MR
[2] Kadanoff L. P., “Scaling laws for Ising models near Tc”, Physics, 2 (1966), 263–272
[3] Vasiliev A. N., The field theoretic renormalization group in critical behavior theory and stochastic dynamics, Chapman and Hall/CRC, Boca Raton, 2004 | MR
[4] Altaisky M. V., “Scale-dependent functions, stochastic quantization and renormalization”, SIGMA, 2 (2006), 046, 17 pp., ages ; hep-th/0604170 | MR | Zbl
[5] Isham C. J., Klauder J. R., “Coherent states for $n$-dimensional Euclidean groups $E(n)$ and their applications”, J. Math. Phys., 32 (1991), 607–620 | DOI | MR | Zbl
[6] Battle G., Wavelets and renormalization, World Scientific, 1989 | MR
[7] Federbush P. G., “A mass zero cluster expansion”, Comm. Math. Phys., 81 (1981), 327–340 | DOI | MR
[8] Altaisky M. V., “Wavelet based regularization for Euclidean field theory”, Proc. of the 24th Int. Coll. “Group Theoretical Methods in Physics”, IOP Conference Series, 173, eds. J.-P. Gazeau et al., Bristol, 2003, 893–897; hep-th/0305167
[9] Carey A. L., “Square-integrable representations of non-unimodular groups”, Bull. Austr. Math. Soc., 15 (1976), 1–12 | DOI | MR | Zbl
[10] Duflo M., Moore C. C., “On regular representations of nonunimodular locally compact group”, J. Func. Anal., 21 (1976), 209–243 | DOI | MR | Zbl
[11] Chui C. K., An introduction to wavelets, Academic Press Inc., 1992 | MR
[12] Handy C. M., Murenzi R., “Continuous wavelet transform analysis of one-dimensional quantum bound states from first principles”, Phys. Rev. A, 54 (1996), 3754–3763 | DOI | MR
[13] Federbush P., “A new formulation and regularization of gauge theories using a non-linear wavelet expansion”, Progr. Theor. Phys., 94 (1995), 1135–1146 ; hep-ph/9505368 | DOI
[14] Halliday I. G., Suranyi P., “Simulation of field theories in wavelet representation”, Nucl. Phys B, 436 (1995), 414–427 ; hep-lat/9407010 | DOI
[15] Best C., “Wavelet-induced renormalization group for Landau–Ginzburg model”, Nucl. Phys. B (Proc. Suppl.), 83–84 (2000), 848–850 ; hep-lat/9909151
[16] Altaisky M. V., Wavelets: theory, applications, implementation, Universities Press Ltd., India, 2005
[17] Christensen J. C., Crane L., “Causal sites as quantum geometry”, J. Math. Phys, 46 (2005), 122502, 17 pp., ages ; gr-qc/0410104 | DOI | MR | Zbl
[18] Altaisky M. V., “Causality and multiscale expansions in quantum field theory”, Phys. Part. Nuclei Lett., 2 (2005), 337–339
[19] Alebastrov V. A., Efimov G. V., “Causality in quantum field theory with nonlocal interaction”, Comm. Math. Phys., 38 (1974), 11–28 | DOI | MR
[20] Efimov G. V., Problems in quantum theory of nonlocal interactions, Nauka, Moscow, 1985 (in Russian) | MR | Zbl
[21] Wilson K. G., Kogut J., “Renormalization group and $\epsilon$-expansion”, Phys. Rep. C, 12 (1974), 77–200 | DOI
[22] Wilson K. G., “The renormalization group and critical phenomena”, Rev. Modern Phys., 55 (1983), 583–600 | DOI | MR
[23] Berestetskii V. B., Lifshitz E. M., Pitaevskii L. P., Course of theoretical physics: quantum electrodynamics, 2nd ed., Pergamon, London, 1982