Some Conformal Invariants from the Noncommutative Residue for Manifolds with Boundary
Symmetry, integrability and geometry: methods and applications, Tome 3 (2007) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We review previous work of Alain Connes, and its extension by the author, on some conformal invariants obtained from the noncommutative residue on even dimensional compact manifolds without boundary. Inspired by recent work of Yong Wang, we also address possible generalizations of these conformal invariants to the setting of compact manifolds with boundary.
Keywords: manifolds with boundary; noncommutative residue; Fredholm module; conformal invariants.
@article{SIGMA_2007_3_a103,
     author = {William J. Ugalde},
     title = {Some {Conformal} {Invariants} from the {Noncommutative} {Residue} for {Manifolds} with {Boundary}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2007},
     volume = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a103/}
}
TY  - JOUR
AU  - William J. Ugalde
TI  - Some Conformal Invariants from the Noncommutative Residue for Manifolds with Boundary
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2007
VL  - 3
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a103/
LA  - en
ID  - SIGMA_2007_3_a103
ER  - 
%0 Journal Article
%A William J. Ugalde
%T Some Conformal Invariants from the Noncommutative Residue for Manifolds with Boundary
%J Symmetry, integrability and geometry: methods and applications
%D 2007
%V 3
%U http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a103/
%G en
%F SIGMA_2007_3_a103
William J. Ugalde. Some Conformal Invariants from the Noncommutative Residue for Manifolds with Boundary. Symmetry, integrability and geometry: methods and applications, Tome 3 (2007). http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a103/

[1] Adler M., “On a trace functional for formal pseudodifferential operators and the symplectic structure of the Korteweg–de Vries type equations”, Invent. Math., 50 (1979), 219–248 | DOI | MR | Zbl

[2] Bär C., “Conformal structures in noncommutative geometry”, J. Noncommut. Geom., 1 (2007), 385–395 ; arXiv:0704.2119 | DOI | MR | Zbl

[3] Boutet de Monvel L., “Boundary problems for pseudo-differential operators”, Acta Math., 126 (1971), 11–51 | DOI | MR | Zbl

[4] Connes A., “The action functional in noncommutative-geometry”, Comm. Math. Phys., 117 (1988), 673–683 | DOI | MR | Zbl

[5] Connes A., “Quantized calculus and applications”, Proceedings of the XIth International Congress of Mathematical Physics, International Press, Cambridge, MA, 1995, 15–36 | MR | Zbl

[6] Connes A., Noncommutative geometry, Academic Press, London and San Diego, 1994 | MR | Zbl

[7] Connes A., Sullivan D., Teleman N., “Quasiconformal mappings, operators on Hilbert space, and local formulae for characteristic classes”, Topology, 33 (1994), 663–681 | DOI | MR | Zbl

[8] Fedosov B. V., Golse F., Leichtnam E., Schrohe E., “The noncommutative residue for manifolds with boundary”, J. Funct. Anal., 142 (1996), 1–31 | DOI | MR | Zbl

[9] Gracia-Bondía J. M., Várilly J. C., Figueroa H., Elements of noncommutative geometry, Birkhäuser Advanced Texts, Birkhäuser, Boston, 2001 | MR | Zbl

[10] Graham R., Jenne R., Mason L., Sparling G., “Conformally invariant powers of the Laplacian. I. Existence”, J. London Math. Soc. (2), 46 (1992), 557–565 | DOI | MR | Zbl

[11] Grubb G., “Singular Green operators and their spectral asymptotics”, Duke Math. J., 51 (1984), 477–528 | DOI | MR | Zbl

[12] Guillemin V. W., “A new proof of Weyl's formula on the asymptotic distribution of eigenvalues”, Adv. Math., 55 (1985), 131–160 | DOI | MR | Zbl

[13] Manin Yu. I., “Algebraic aspects of nonlinear differential equations”, J. Sov. Math., 11 (1979), 1–22 | DOI

[14] Paneitz S., A quadratic conformally covariant differential operator for arbitrary pseudo-Riemannian manifolds, Preprint, 1983

[15] Polyakov A., “Quantum geometry of bosonic strings”, Phys. Lett. B, 103 (1981), 207–210 | DOI | MR

[16] Schrohe E., “Noncommutative residue, Dixmier's traces, and heat trace expansions on manifolds with boundary”, Geometric aspects of partial differential equations, Contemp. Math., 242, 1999, 161–186 ; math.AP/9911053 | MR | Zbl

[17] Schrohe E., “A short introduction to Boutet de Monvel's calculus”, Approaches to Singular Analysis, eds. J. Gil, D. Grieser and M. Lesch, Birkhäuser, Basel, 2001, 85–116 | MR | Zbl

[18] Ugalde W. J., “Differential forms canonically associated to even-dimensional compact conformal manifolds”, Clifford Algebras. Applications to Mathematics, Physics, and Engineering, Progress in Mathematical Physics, 34, ed. R. Ablamowicz, Birkhäuser, Boston, 2004, 211–225 ; math.DG/0211240 | MR | Zbl

[19] Ugalde W. J., “A construction of critical GJMS operators using Wodzicki's residue”, Comm. Math. Phys., 261 (2006), 771–788 ; math.DG/0403392 | DOI | MR | Zbl

[20] Ugalde W. J., Differential forms and the Wodzicki residue, math.DG/0211361

[21] Wang Y., “Differential forms and the Wodzicki residue for manifolds with boundary”, J. Geom. Phys., 56 (2006), 731–753 ; math.DG/0609062 | DOI | MR | Zbl

[22] Wang Y., “Differential forms and the noncommutative residue for manifolds with boundary in the non-product case”, Lett. Math. Phys., 77 (2006), 41–51 ; math.DG/0609060 | DOI | MR | Zbl

[23] Wodzicki M., “Local invariants of spectral asymmetry”, Invent. Math., 75 (1984), 143–178 | DOI | MR | Zbl