@article{SIGMA_2007_3_a102,
author = {Asghar Qadir},
title = {Geometric {Linearization} of {Ordinary} {Differential} {Equations}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2007},
volume = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a102/}
}
Asghar Qadir. Geometric Linearization of Ordinary Differential Equations. Symmetry, integrability and geometry: methods and applications, Tome 3 (2007). http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a102/
[1] Lie S., “Theorie der transformationsgruppen”, Math. Ann., 16 (1880), 441–528 | DOI | MR
[2] Lie S., “Klassification und Integration von gewöhnlichen Differentialgleichungen zwischen $x$, $y$, die eine Gruppe von Transformationen gestatten”, Arch. Math. Naturv., 9 (1883), 371–393
[3] Olver P. J., Applications of Lie groups to differential equations, Springer, New York, 1986 | MR
[4] Wafo Soh C., Mahomed F. M., “Symmetry breaking for a system of two linear second-order ordinary differential equations”, Nonlinear Dynamics, 22 (2000), 121–133 | DOI | MR | Zbl
[5] Mahomed F. M., Leach P. G. L., “Symmetry Lie algebras of $n$th order ordinary differential equations”, J. Math. Anal. Appl., 151 (1990), 80–107 | DOI | MR | Zbl
[6] Chern S. S., “Sur la geometrie d'une equation differentielle du troiseme orde”, C. R. Acad. Sci. Paris, 204 (1937), 1227–1229
[7] Chern S. S., “The geometry of the differential equation $y'''=F(x,y,y',y'')$”, Sci. Rep. Nat. Tsing Hua Univ., 4 (1940), 97–111 | MR
[8] Grebot G., The linearization of third order ODEs, Preprint, 1996
[9] Grebot G., “The characterization of third order ordinary differential equations admitting a transitive fibre-preserving point symmetry group”, J. Math. Anal. Appl., 206 (1997), 364–388 | DOI | MR | Zbl
[10] Neut S., Petitot M., “La géométrie de l'équation $y'''=f(x,y,y',y'')$”, C. R. Acad. Sci. Paris Sér I, 335 (2002), 515–518 | MR | Zbl
[11] Ibragimov N. H., Meleshko S. V., “Linearization of third-order ordinary differential equations by point and contact transformations”, J. Math. Anal. Appl., 308 (2005), 266–289 | DOI | MR | Zbl
[12] Meleshko S. V., “On linearization of third-order ordinary differential equations”, J. Phys. A: Math. Gen. Math., 39 (2006), 15135–15145 | DOI | MR | Zbl
[13] Aminova A. V., Aminov N. A.-M., “Projective geometry of systems of differential equations: general conceptions”, Tensor NS, 62 (2000), 65–85 | MR
[14] Bryant R. L., Manno G., Matveev V. S., A solution of a problem of Sophus Lie: normal forms of 2-dim metrics admitting two projective vector fields, arXiv:0705.3592
[15] Feroze T., Mahomed F. M., Qadir A., “The connection between isometries and symmetries of geodesic equations of the underlying spaces”, Nonlinear Dynamics, 45 (2006), 65–74 | DOI | MR | Zbl
[16] Mahomed F. M., Qadir A., “Linearization criteria for a system of second-order quadratically semi-linear ordinary differential equations”, Nonlinear Dynamics, 48 (2007), 417–422 | DOI | MR | Zbl
[17] Mahomed F. M., Qadir A., Invariant linearization criteria for systems of cubically semi-linear second-order ordinary differential equations, arXiv:0711.1213 | MR
[18] Fredericks E., Mahomed F. M., Momoniat E., Qadir A., Constructing a space from the system of geodesic equations, arXiv:0711.1217
[19] Mahomed F. M., Qadir A., Linearizability criteria for a class of third order semi-linear ODEs, arXiv:0711.1214
[20] Mahomed F. M., Qadir A., Conditional linearizability criteria for scalar fourth order semi-linear ordinary differential equations, arXiv:0711.1222
[21] Mahomed F. M., Naeem I., Qadir A., Conditional linearizability criteria for a system of third-order ordinary differential equations, arXiv:0711.1215 | MR