Translation to Bundle Operators
Symmetry, integrability and geometry: methods and applications, Tome 3 (2007) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We give explicit formulas for conformally invariant operators with leading term an $m$-th power of Laplacian on the product of spheres with the natural pseudo-Riemannian product metric for all $m$.
Keywords: conformally invariant operators; pseudo-Riemannian product of shperes; Fefferman–Graham ambient space; intertwining operator of the conformal group $O(p+1,q+1)$.
@article{SIGMA_2007_3_a101,
     author = {Thomas P. Branson and Doojin Hong},
     title = {Translation to {Bundle} {Operators}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2007},
     volume = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a101/}
}
TY  - JOUR
AU  - Thomas P. Branson
AU  - Doojin Hong
TI  - Translation to Bundle Operators
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2007
VL  - 3
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a101/
LA  - en
ID  - SIGMA_2007_3_a101
ER  - 
%0 Journal Article
%A Thomas P. Branson
%A Doojin Hong
%T Translation to Bundle Operators
%J Symmetry, integrability and geometry: methods and applications
%D 2007
%V 3
%U http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a101/
%G en
%F SIGMA_2007_3_a101
Thomas P. Branson; Doojin Hong. Translation to Bundle Operators. Symmetry, integrability and geometry: methods and applications, Tome 3 (2007). http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a101/

[1] Branson T., “Group representations arising from Lorentz conformal geometry”, J. Funct. Anal., 74 (1987), 199–291 | DOI | MR | Zbl

[2] Branson T., “Harmonic analysis in vector bundles associated to the rotation and spin groups”, J. Funct. Anal., 106 (1992), 314–328 | DOI | MR | Zbl

[3] Branson T., “Sharp inequalities, the functional determinant, and the complementary series”, Trans. Amer. Math. Soc., 347 (1995), 3671–3742 | DOI | MR | Zbl

[4] Branson T., “Nonlinear phenomena in the spectral theory of geometric linear differential operators”, Proc. Symp. Pure Math., 59 (1996), 27–65 | MR | Zbl

[5] Branson T., Hong D., Spectrum generating on twistor bundle, math.DG/0606524 | MR

[6] Fefferman C., Graham C. R., “Conformal invariants”, Eli Cartan et les Mathématiques d'aujourd'hui, Asterisque, Societé Mathématique de France, Paris, 1996, 163–205

[7] Gover A. R., Laplacian operators and $Q$-curvature on conformally Einstein manifolds, math.DG/0506037 | MR

[8] Graham C. R., Jenne R., Mason L. J., Sparling G. A., “Conformally invariant powers of the Laplacian. I. Existence”, J. London Math. Soc., 46 (1992), 557–565 | DOI | MR | Zbl

[9] Hong D., “Eigenvalues of Dirac and Rarita–Schwinger operators”, Clifford Algebras and their Applications in Mathematical Physics, Birkhäuser, 2000, 201–210 | MR

[10] Hong D., Spectra of higher spin operators, PhD Dissertation, University of Iowa, 2004

[11] Hughston L. P., Hurd T. R., “A $\mathbb C\mathbb P^5$ calculus for space-time fields”, Phys. Rep., 100 (1983), 273–326 | DOI | MR

[12] Ikeda A., Taniguchi Y., “Spectra and eigenforms of the Laplacian on $S^n$ and $P^n(\mathbb C)$”, Osaka J. Math., 15 (1978), 515–546 | MR | Zbl

[13] Ørsted B., “Conformally invariant differential equations and projective geometry”, J. Funct. Anal., 44 (1981), 1–23 | DOI | MR