Toeplitz Operators, Kähler Manifolds, and Line Bundles
Symmetry, integrability and geometry: methods and applications, Tome 3 (2007) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This is a survey paper. We discuss Toeplitz operators in Kähler geometry, with applications to geometric quantization, and review some recent developments.
Keywords: Kähler manifolds; holomorphic line bundles; geometric quantization; Toeplitz operators.
@article{SIGMA_2007_3_a100,
     author = {Tatyana Foth},
     title = {Toeplitz {Operators,} {K\"ahler} {Manifolds,} and {Line} {Bundles}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2007},
     volume = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a100/}
}
TY  - JOUR
AU  - Tatyana Foth
TI  - Toeplitz Operators, Kähler Manifolds, and Line Bundles
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2007
VL  - 3
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a100/
LA  - en
ID  - SIGMA_2007_3_a100
ER  - 
%0 Journal Article
%A Tatyana Foth
%T Toeplitz Operators, Kähler Manifolds, and Line Bundles
%J Symmetry, integrability and geometry: methods and applications
%D 2007
%V 3
%U http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a100/
%G en
%F SIGMA_2007_3_a100
Tatyana Foth. Toeplitz Operators, Kähler Manifolds, and Line Bundles. Symmetry, integrability and geometry: methods and applications, Tome 3 (2007). http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a100/

[1] Berezin F., “Covariant and contravariant symbols of operators”, Izv. Akad. Nauk SSSR Ser. Mat., 36:5 (1972), 1134–1167 (in Russian) | MR | Zbl

[2] Berezin F., “Spectral properties of generalized Toeplitz matrices”, Mat. Sb. (N.S.), 95(137):2(10) (1974), 305–325, 328 (in Russian) | MR | Zbl

[3] Berezin F., “General concept of quantization”, Comm. Math. Phys., 40 (1975), 153–174 | DOI | MR

[4] Berman R., Berndtsson B., Sjoestrand J., Asymptotics of Bergman kernels, math.CV/0506367

[5] Bloch A., Golse F., Uribe A., “Dispersionless Toda and Toeplitz operators”, Duke Math. J., 117 (2003), 157–196 | DOI | MR | Zbl

[6] Bordemann M., Meinrenken E., Schlichenmaier M., “Toeplitz quantization of Kähler manifolds and $gl(N)$, $N\to\infty$ limits”, Comm. Math. Phys., 165 (1994), 281–296 | DOI | MR | Zbl

[7] Borthwick D., “Introduction to Kähler quantization”, Quantization, the Segal–Bargmann transform and semiclassical analysis, 1st Summer School in Analysis and Mathematical Physics (Mexico, 1998), Contemp. Math., 260, 2000, 91–132 | MR | Zbl

[8] Borthwick D., Lesniewski A., Upmeier H., “Nonperturbative deformation quantization of Cartan domains”, J. Funct. Anal., 113 (1993), 153–176 | DOI | MR | Zbl

[9] Borthwick D., Paul T., Uribe A., “Semiclassical spectral estimates for Toeplitz operators”, Ann. Inst. Fourier (Grenoble), 48 (1998), 1189–1229 | MR | Zbl

[10] Borthwick D., Paul T., Uribe A., “Legendrian distributions with applications to relative Poincaré series”, Invent. Math., 122 (1995), 359–402 ; hep-th/9406036 | DOI | MR | Zbl

[11] Böttcher A., Silbermann B., Analysis of Toeplitz operators, Springer-Verlag, Berlin, 1990 | MR

[12] Boutet de Monvel L., “On the index of Toeplitz operators of several complex variables”, Invent. Math., 50 (1978/79), 249–272 | DOI | MR

[13] Boutet de Monvel L., “Toeplitz operators – an asymptotic quantization of symplectic cones”, Stochastic Processes and Their Applications in Mathematics and Physics (Bielefeld, 1985), Math. Appl., 61, Kluwer Acad. Publ., Dordrecht, 1990, 95–106 | MR

[14] Boutet de Monvel L., “Logarithmic trace of Toeplitz projectors”, Math. Res. Lett., 12 (2005), 401–412 ; math.CV/0412252 | MR | Zbl

[15] Boutet de Monvel L., Guillemin V., The spectral theory of Toeplitz operators, Annals of Math. Studies, 99, Princeton University Press, Princeton, New Jersey, 1981 | MR | Zbl

[16] Boutet de Monvel L., Sjöstrand J.,, “Sur la singularite des noyaux de Bergman et de Szego”, Journées: Équations aux Dérivees Partielles de Rennes (1975), Asterisque, 34–35, 1976, 123–164 | MR | Zbl

[17] Brown A., Halmos P., “Algebraic properties of Toeplitz operators”, J. Reine Angew. Math., 213 (1963/1964), 89–102 | MR | Zbl

[18] Charles L., “Berezin–Toeplitz operators, a semi-classical approach”, Comm. Math. Phys., 239 (2003), 1–28 | DOI | MR | Zbl

[19] Charles L., “Quasimodes and Bohr–Sommerfeld conditions for the Toeplitz operators”, Comm. Partial Differential Equations, 28 (2003), 1527–1566 | DOI | MR | Zbl

[20] Charles L., “Toeplitz operators and Hamiltonian torus actions”, J. Funct. Anal., 236 (2006), 299–350 ; math.SG/0405128 | DOI | MR | Zbl

[21] Charles L., “Symbolic calculus for Toeplitz operators with half-form”, J. Symplectic Geom., 4 (2006), 171–198 ; math.SG/0602167 | MR | Zbl

[22] Charles L., “Semi-classical properties of geometric quantization with metaplectic correction”, Comm. Math. Phys., 270 (2007), 445–480 ; math.SG/0602168 | DOI | MR | Zbl

[23] Donaldson S., “Remarks on gauge theory, complex geometry and $4$-manifold topology”, Fields Medallists' Lectures, World Sci. Ser. 20th Century Math., 5, World Sci. Publ., River Edge, NJ, 1997, 384–403 | MR

[24] Douglas R., “Ideals in Toeplitz algebras”, Houston J. Math., 31 (2005), 529–539 ; math.OA/0309438 | MR | Zbl

[25] Douglas R., Widom H., “Toeplitz operators with locally sectorial symbols”, Indiana Univ. Math. J., 20 (1970/1971), 385–388 | DOI | MR | Zbl

[26] Foth T., “Toeplitz operators, deformations, and asymptotics”, J. Geom. Phys., 57 (2007), 855–861 | DOI | MR | Zbl

[27] Foth T., Uribe A., “The manifold of compatible almost complex structures and geometric quantization”, Comm. Math. Phys., 274:2 (2007), 357–379 | DOI | MR | Zbl

[28] Fujiki A., “Moduli space of polarized algebraic manifolds and Kähler metrics”, Sugaku Expositions, 5 (1992), 173–191 | MR

[29] Guillemin V., “Star products on compact pre-quantizable symplectic manifolds”, Lett. Math. Phys., 35 (1995), 85–89 | DOI | MR | Zbl

[30] Jewell N., “Toeplitz operators on the Bergman spaces and in several complex variables”, Proc. London Math. Soc. (3), 41 (1980), 193–216 | DOI | MR | Zbl

[31] Jewell N., Krantz S., “Toeplitz operators and related function algebras on certain pseudoconvex domains”, Trans. Amer. Math. Soc., 252 (1979), 297–312 | DOI | MR | Zbl

[32] Karabegov A., Schlichenmaier M., “Identification of Berezin–Toeplitz deformation quantization”, J. Reine Angew. Math., 540 (2001), 49–76 ; math.QA/0006063 | MR | Zbl

[33] Klein E., “The numerical range of a Toeplitz operator”, Proc. Amer. Math. Soc., 35 (1972), 101–103 | DOI | MR | Zbl

[34] Klein E., “More algebraic properties of Toeplitz operators”, Math. Ann., 202 (1973), 203–207 | DOI | MR | Zbl

[35] Klimek S., Lesniewski A., “Quantum Riemann surfaces. I. The unit disc”, Comm. Math. Phys., 146 (1992), 103–122 ; Klimek S., Lesniewski A., “Quantum Riemann surfaces. II. The discrete series”, Lett. Math. Phys., 24 (1992), 125–139 ; Klimek S., Lesniewski A., “Quantum Riemann surfaces. III. The exceptional cases”, Lett. Math. Phys., 32 (1994), 45–61 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl

[36] Klimek S., Lesniewski A., “Quantum Riemann surfaces for arbitrary Planck's constant”, J. Math. Phys., 37 (1996), 2157–2165 | DOI | MR | Zbl

[37] Kostant B., “Quantization and unitary representations. I. Prequantization”, Lectures in Modern Analysis and Applications, III, Lecture Notes in Math., 170, Springer, Berlin, 1970, 87–208 | MR

[38] Peller V., “Invariant subspaces of Toeplitz operators with piecewise continuous symbols”, Proc. Amer. Math. Soc., 119 (1993), 171–178 | DOI | MR | Zbl

[39] Reshetikhin N., Takhtajan L., “Deformation quantization of Kähler manifolds”, L. D. Faddeev's Seminar on Mathematical Physics, Amer. Math. Soc. Transl. Ser. 2, 201, Amer. Math. Soc., Providence, RI, 2000, 257–276 ; math.QA/9907171 | MR | Zbl

[40] Salinas N., Sheu A., Upmeier H., “Toeplitz operators on pseudoconvex domains and foliation $C^*$-algebras”, Ann. Math. (2), 130 (1989), 531–565 | DOI | MR | Zbl

[41] Schlichenmaier M., “Berezin–Toeplitz quantization of compact Kähler manifolds”, Quantization, Coherent States, and Poisson Structures (Bialowieza, 1995), PWN, Warsaw, 1998, 101–115 | MR

[42] Schlichenmaier M., “Deformation quantization of compact Kähler manifolds by Berezin–Toeplitz quantization”, Conférence Moshé Flato 1999, Vol. II (Dijon), Math. Phys. Stud., 22, Kluwer Acad. Publ., Dordrecht, 2000, 289–306 ; math.QA/9910137 | MR | Zbl

[43] Schlichenmaier M., “Berezin–Toeplitz quantization and Berezin transform”, Long Time Behaviour of Classical and Quantum Systems (Bologna, 1999), Ser. Concr. Appl. Math., 1, World Sci. Publ., River Edge, NJ, 2001, 271–287 | MR | Zbl

[44] Souriau J.-M., Structure of dynamical systems. A symplectic view of physics,, Progress in Mathematics, 149, Birkhäuser Boston, Inc., Boston, MA, 1997, translation of Structure des systèmes dynamiques, Maîtrises de mathématiques Dunod, Paris, 1970 | MR | Zbl

[45] Stroethoff K., Zheng D., “Bounded Toeplitz products on the Bergman space of the polydisk”, J. Math. Anal. Appl., 278 (2003), 125–135 | DOI | MR | Zbl

[46] Stroethoff K., Zheng D., “Bounded Toeplitz products on Bergman spaces of the unit ball”, J. Math. Anal. Appl., 325 (2007), 114–129 | DOI | MR | Zbl

[47] Upmeier H., “Toeplitz operators on bounded symmetric domains”, Trans. Amer. Math. Soc., 280 (1983), 221–237 | DOI | MR | Zbl

[48] Upmeier H., “Toeplitz $C^*$-algebras on bounded symmetric domains”, Ann. Math. (2), 119 (1984), 549–576 | DOI | MR | Zbl

[49] Upmeier H., “Toeplitz operators on symmetric Siegel domains”, Math. Ann., 271 (1985), 401–414 | DOI | MR | Zbl

[50] Upmeier H., Toeplitz operators and index theory in several complex variables, Operator Theory: Advances and Applications, 81, Birkhäuser Verlag, Basel, 1996 | MR | Zbl

[51] Widom H., “On the spectrum of a Toeplitz operator”, Pacific J. Math., 14 (1964), 365–375 | MR | Zbl

[52] Widom H., “Toeplitz operators on $H_{p}$”, Pacific J. Math., 19 (1966), 573–582 | MR | Zbl

[53] Zelditch S., “Index and dynamics of quantized contact transformations”, Ann. Inst. Fourier (Grenoble), 47 (1997), 305–363 ; math-ph/0002007 | MR | Zbl

[54] Zelditch S., “Quantum maps and automorphisms”, The Breadth of Symplectic and Poisson Geometry, Progr. Math., 232, Birkhäuser Boston, Boston, MA, 2005, 623–654 ; math.QA/0307175 | MR | Zbl

[55] Zelditch S., Quantum dynamics from the semi-classical point of view, unpublished notes