@article{SIGMA_2007_3_a10,
author = {B. Doyon},
title = {Finite-Temperature {Form} {Factors:} {a~Review}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2007},
volume = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a10/}
}
B. Doyon. Finite-Temperature Form Factors: a Review. Symmetry, integrability and geometry: methods and applications, Tome 3 (2007). http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a10/
[1] Kapusta J. I., Finite temperature field theory, Cambridge University Press, Cambridge, 1989 | MR | Zbl
[2] Doyon B., “Finite-temperature form factors in the free Majorana theory”, J. Stat. Mech. Theory Exp., 2005, P11006, 45 pp., ages ; hep-th/0506105 | DOI | MR
[3] Bourbonnais C., Jerome D., “The normal phase of quasi-one-dimensional organic superconductors”, Advances in Synthetic Metals, Twenty Years of Progress in Science and Technology, eds. P. Bernier, S. Lefrant and E. Bidan, Elsevier, New York, 1999, 206–301
[4] Gruner G., Density waves in solids, Addison-Wesley, Reading (MA), 1994
[5] Essler F. H. L., Konik R. M., “Applications of massive integrable quantum field theories to problems in condensed matter physics”, From Fields to Strings: Circumnavigating Theoretical Physics, Ian Kogan Memorial Collection, eds. M. Shifman, A. Vainshtein and J. Wheater, World Scientific, 2004 | MR
[6] Vergeles S. N., Gryanik V. M., “Two-dimensional quantum field theories having exact solutions”, Yad. Fiz., 23 (1976), 1324–1334 (in Russian)
[7] Weisz P., “Exact quantum sine-Gordon soliton form factors”, Phys. Lett. B, 67 (1977), 179–182 | DOI
[8] Karowski M., Weisz P., “Exact form factors in (1+1)-dimensional field theoretic models with soliton behaviour”, Nuclear Phys. B, 139 (1978), 455–476 | DOI | MR
[9] Berg B., Karowski M., Weisz P., “Construction of Green's functions from an exact $S$-matrix”, Phys. Rev. D, 19 (1979), 2477–2479 | DOI
[10] Smirnov F. A., Form factors in completely integrable models of quantum field theory, World Scientific, Singapore, 1992 | MR
[11] Zamolodchikov Al. B., “Two-point correlation function in scaling Lee–Yang model”, Nuclear Phys. B, 348 (1991), 619–641 | DOI | MR
[12] Matsubara T. M., “A new approach to quantum-statistical mechanics”, Progr. Theoret. Phys., 14 (1955), 351–378 | DOI | MR | Zbl
[13] Kubo R., “Statistical-mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems”, J. Phys. Soc. Japan, 12 (1957), 570–586 | DOI | MR
[14] Martin C., Schwinger J., “Theory of many-particle systems. I”, Phys. Rev., 115 (1959), 1342–1373 | DOI | MR | Zbl
[15] Smirnov F. A., Quasi-classical study of form factors in finite volume, hep-th/9802132 | MR
[16] Smirnov F. A., Structure of matrix elements in quantum Toda chain, hep-th/9805011 | MR
[17] van Elburg R. A. J., Schoutens K., “Form factors for quasi-particles in $c=1$ conformal field theory”, J. Phys. A: Math. Gen., 33 (2000), 7987–8012 ; cond-mat/0007226 | DOI | MR | Zbl
[18] Mussardo G., Riva V., Sotkov G., “Finite-volume form factors in semiclassical approximation”, Nuclear Phys. B, 670 (2003), 464–478 ; hep-th/0307125 | DOI | MR | Zbl
[19] Bugrij A. I., The correlation function in two dimensional Ising model on the finite size lattice. I, hep-th/0011104
[20] Bugrij A. I., Form factor representation of the correlation function of the two dimensional Ising model on a cylinder, hep-th/0107117 | MR
[21] Fonseca P., Zamolodchikov A. B., “Ising field theory in a magnetic field: analytic properties of the free energy”, J. Statist. Phys., 110 (2003), 527–590 ; hep-th/0112167 | DOI | MR | Zbl
[22] Leplae L., Umezawa H., Mancini F., “Derivation and application of the boson method in superconductivity”, Phys. Rep., 10 (1974), 151–272 | DOI
[23] Arimitsu T., Umezawa H., “Non-equilibrium thermo field dynamics”, Prog. Theoret. Phys., 77 (1987), 32–52 | DOI
[24] Arimitsu T., Umezawa H., “General structure of non-equilibrium thermo field dynamics”, Progr. Theoret. Phys., 77 (1987), 53–67 | DOI
[25] Henning P. A., “Thermo field dynamics for quantum fields with continuous mass spectrum”, Phys. Rep., 253 (1995), 235–381 ; nucl-th/9311001 | DOI | MR
[26] Amaral R. L. P. G., Belvedere L. V., Two-dimensional thermofield bosonization, hep-th/0504012
[27] Altshuler B. L., Konik R., Tsvelik A. M., “Low temperature correlation functions in integrable models: derivation of the large distance and time asymptotics from the form factor expansion”, Nuclear Phys. B, 739 (2006), 311–327 ; cond-mat/0508618 | DOI | MR | Zbl
[28] Sachdev S., “The universal, finite temperature, crossover functions of the quantum transition in the Ising chain in a transverse field”, Nuclear Phys. B, 464 (1996), 576–595 ; cond-mat/9509147 | DOI | MR | Zbl
[29] Sachdev S., Young A. P., “Low temperature relaxational dynamics of the Ising chain in a transverse field”, Phys. Rev. Lett., 78 (1997), 2220–2223 ; cond-mat/9609185 | DOI
[30] Korepin V. E., Bogoliubov N. M., Izergin A. G., Quantum inverse scattering method and correlation functions, Cambridge University Press, Cambridge, 1993 | MR | Zbl
[31] Doyon B., Gamsa A., Work in progress
[32] Balog J., “Field theoretical derivation of the TBA integral equations”, Nuclear Phys. B, 419 (1994), 480–512 | DOI | MR
[33] Leclair A., Mussardo G., “Finite temperature correlation functions in integrable QFT”, Nuclear Phys. B, 552 (1999), 624–642 ; hep-th/9902075 | DOI | MR | Zbl
[34] Lukyanov S., “Finite-temperature expectation values of local fields in the sinh-Gordon model”, Nuclear Phys. B, 612 (2001), 391–412 ; hep-th/0005027 | DOI | MR | Zbl
[35] Essler F., Konik R., Private communication
[36] Wu T. T., McCoy B. M., Tracy C. A., Barouch E., “Spin-spin correlation functions for the two-dimensional Ising model: exact theory in the scaling region”, Phys. Rev. B, 13 (1976), 316–374 | DOI
[37] Perk J. H. H., “Equations of motion for the transverse correlations of the one-dimensional $XY$-model at finite temperature”, Phys. Lett. A, 79 (1980), 1–2 | DOI | MR
[38] Lisovyy O., “Nonlinear differential equations for the correlation functions of the 2D Ising model on the cylinder”, Adv. Theor. Math. Phys., 5 (2002), 909–922 | MR
[39] Fonseca P., Zamolodchikov A. B., Ward identities and integrable differential equations in the Ising field theory, hep-th/0309228
[40] Kadanoff L. P., Ceva H., “Determination of an operator algebra for the two-dimensional Ising model”, Phys. Rev. B, 3 (1971), 3918–3939 | DOI | MR
[41] Schroer B., Truong T. T., “The order/disorder quantum field operators associated with the two-dimensional Ising model in the continuum limit”, Nuclear Phys. B, 144 (1978), 80–122 | DOI | MR
[42] Doyon B., Lectures on integrable quantum field theory, http://www-thphys.physics.ox.ac.uk/user/BenjaminDoyon/lectures.pdf
[43] van Hove L., “Quantum field theory at positive temperature”, Phys. Rep., 137 (1986), 11–20 | DOI | MR
[44] Doyon B., “Two-point functions of scaling fields in the Dirac theory on the Poincaré disk”, Nuclear Phys. B, 675 (2003), 607–630 ; hep-th/0304190 | DOI | MR | Zbl
[45] McCoy B. M., Wu T. T., The two-dimensional Ising model, Harvard University Press, Cambridge (MA), 1973
[46] Babelon D., Bernard D., “From form factors to correlation functions: the Ising model”, Phys. Lett. B, 288 (1992), 113–120 | DOI | MR
[47] Leclair A., Lesage F., Sachdev S., Saleur H., “Finite temperature correlations in the one-dimensional quantum Ising model”, Nuclear Phys. B, 482 (1996), 579–612 ; cond-mat/9606104 | DOI | MR | Zbl
[48] Itzykson C., Drouffe J.-M., Statistical field theory, Cambridge University Press, Cambridge, 1989
[49] Lisovyy O., “Tau functions for the Dirac operator on the cylinder”, Comm. Math. Phys., 255 (2005), 61–95 ; hep-th/0312277 | DOI | MR | Zbl