Raising and Lowering Operators for Askey–Wilson Polynomials
Symmetry, integrability and geometry: methods and applications, Tome 3 (2007) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we describe two pairs of raising/lowering operators for Askey–Wilson polynomials, which result from constructions involving very different techniques. The first technique is quite elementary, and depends only on the “classical” properties of these polynomials, viz. the $q$-difference equation and the three term recurrence. The second technique is less elementary, and involves the one-variable version of the double affine Hecke algebra.
Keywords: orthogonal polynomials; Askey–Wilson polynomials; $q$-difference equation; three term recurrence; raising operators; lowering operators; root systems; double affine Hecke algebra.
@article{SIGMA_2007_3_a1,
     author = {S. Sahi},
     title = {Raising and {Lowering} {Operators} for {Askey{\textendash}Wilson} {Polynomials}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2007},
     volume = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a1/}
}
TY  - JOUR
AU  - S. Sahi
TI  - Raising and Lowering Operators for Askey–Wilson Polynomials
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2007
VL  - 3
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a1/
LA  - en
ID  - SIGMA_2007_3_a1
ER  - 
%0 Journal Article
%A S. Sahi
%T Raising and Lowering Operators for Askey–Wilson Polynomials
%J Symmetry, integrability and geometry: methods and applications
%D 2007
%V 3
%U http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a1/
%G en
%F SIGMA_2007_3_a1
S. Sahi. Raising and Lowering Operators for Askey–Wilson Polynomials. Symmetry, integrability and geometry: methods and applications, Tome 3 (2007). http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a1/

[1] Askey R., Wilson J., “Some basic hypergeometric polynomials that generalize Jacobi polynomials”, Mem. Amer. Math. Soc., no. 319, 1985, 1–53 | MR

[2] Bangerezako G., “The factorization method for the Askey–Wilson polynomials”, J. Comput. Appl. Math., 107 (1999), 219–232 | DOI | MR | Zbl

[3] Cherednik I., “Double affine Hecke algebras, Knizhnik–Zamolodchikov equations, and Macdonald's operators”, Int. Math. Res. Not., no. 9, 1992, 171–180 | MR

[4] Cherednik I., “Double affine Hecke algebras and Macdonald's conjectures”, Ann. of Math., 141 (1995), 191–216 | DOI | MR | Zbl

[5] Etingof P., Oblomkov A., Rains E., Generalized double affine Hecke algebras of rank 1 and quantized del Pezzo surfaces, math.QA/0406480 | MR

[6] Garsia A., Remmel R., “Plethystic formulas and positivity for $q,t$-Kostka coefficients”, Mathematical Essays in Honor of Gian-Carlo Rota, Progr. Math., 161, eds. B. Sagan and R. Stanley, 1998, 245–262 | MR | Zbl

[7] Garsia A., Tesler G., “Plethystic formulas for the Macdonald $q,t$-Kostka coefficients”, Adv. Math., 123 (1996), 144–222 | DOI | MR | Zbl

[8] Ion B., Sahi S., “Triple groups and Cherednik algebras”, Contemp. Math., 417 (2006), 183–206 ; math.QA/0304186 | MR | Zbl

[9] Kirillov A., Noumi M., “$q$-difference raising operators for Macdonald polynomials and the integrality of transition coefficients”, Algebraic Methods and $q$-Special Functions, CRM Proceedings and Lecture Notes, 22, 1999, 227–243 ; q-alg/9605005 | MR | Zbl

[10] Kirillov A., Noumi M., “Affine Hecke algebras and raising operators for Macdonald polynomials”, Duke Math. J., 93 (1998), 1–39 ; q-alg/9605004 | DOI | MR | Zbl

[11] Knop F., “Integrality of two variable Kostka functions”, J. Reine Angew. Math., 482 (1997), 177–189 ; q-alg/9603027 | MR | Zbl

[12] Koekoek R., Swarttouw R., The Askey-scheme of hypergeometric orthogonal polynomials and its $q$-analogue, Report no. 98-17, Delft University ofTechnology, Department of Technical Mathematics and Informatics, 1998; http://aw.twi.tudelft.nl/~koekoek/askey/ch3/par1/par1.html

[13] Koornwinder T., “Askey–Wilson polynomials for root systems of type BC”, Contemp. Math., 138 (1992), 189–204 | MR | Zbl

[14] Koornwinder T., “Lowering and raising operators for some special orthogonal polynomials”, Contemp. Math., 417 (2006), 227–238 | MR | Zbl

[15] Koornwinder T., “The structure relation for Askey–Wilson polynomials”, J. Comput. Appl. Math., 207:2 (2007), 214–226 ; math.CA/0601303 | DOI | MR | Zbl

[16] Lapointe L., Vinet L., “Creation operators for the Macdonald and Jack polynomials”, Lett. Math. Phys., 40 (1997), 269–286 | DOI | MR | Zbl

[17] Lapointe L., Vinet L., “Rodrigues formulas for the Macdonald polynomials”, Adv. Math., 130 (1997), 261–279 ; q-alg/9607025 | DOI | MR | Zbl

[18] Macdonald I., Affine Hecke algebras and orthogonal polynomials, Cambridge University Press, 2003 | MR | Zbl

[19] Noumi M., “Macdonald–Koornwinder polynomials and affine Hecke algebras”, RIMS Kokyuroku, 919 (1995), 44–55 (in Japanese) | MR | Zbl

[20] Noumi M., Stokman J., “Askey–Wilson polynomials: an affine Hecke algebra approach”, Laredo Lectures on Orthogonal Polynomials and Special Functions, Nova Science Publishers, eds. R. Alvarez-Nodarse, F. Marcellan and W. Van Assche, 2004, 111–144 ; math.QA/0001033 | MR | Zbl

[21] Sahi S., “Interpolation, integrality, and a generalization of Macdonald's polynomials”, Int. Math. Res. Not., no. 10 (1996), 457–471 | DOI | MR

[22] Sahi S., “Nonsymmetric Koornwinder polynomials and duality”, Ann. of Math., 150 (1999), 267–282 ; q-alg/9710032 | DOI | MR | Zbl

[23] Sahi S., “Some properties of Koornwinder polynomials”, Contemp. Math., 254 (2000), 395–411 | MR | Zbl

[24] Stokman J., “Koornwinder polynomials and affine Hecke algebras”, Int. Math. Res. Not., no. 19 (2000), 1005–1042 ; math.QA/0002090 | DOI | MR

[25] van Diejen J., “Self-dual Koornwinder–Macdonald polynomials”, Invent. Math., 126 (1996), 319–339 ; q-alg/9507033 | DOI | MR | Zbl