@article{SIGMA_2007_3_a1,
author = {S. Sahi},
title = {Raising and {Lowering} {Operators} for {Askey{\textendash}Wilson} {Polynomials}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2007},
volume = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a1/}
}
S. Sahi. Raising and Lowering Operators for Askey–Wilson Polynomials. Symmetry, integrability and geometry: methods and applications, Tome 3 (2007). http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a1/
[1] Askey R., Wilson J., “Some basic hypergeometric polynomials that generalize Jacobi polynomials”, Mem. Amer. Math. Soc., no. 319, 1985, 1–53 | MR
[2] Bangerezako G., “The factorization method for the Askey–Wilson polynomials”, J. Comput. Appl. Math., 107 (1999), 219–232 | DOI | MR | Zbl
[3] Cherednik I., “Double affine Hecke algebras, Knizhnik–Zamolodchikov equations, and Macdonald's operators”, Int. Math. Res. Not., no. 9, 1992, 171–180 | MR
[4] Cherednik I., “Double affine Hecke algebras and Macdonald's conjectures”, Ann. of Math., 141 (1995), 191–216 | DOI | MR | Zbl
[5] Etingof P., Oblomkov A., Rains E., Generalized double affine Hecke algebras of rank 1 and quantized del Pezzo surfaces, math.QA/0406480 | MR
[6] Garsia A., Remmel R., “Plethystic formulas and positivity for $q,t$-Kostka coefficients”, Mathematical Essays in Honor of Gian-Carlo Rota, Progr. Math., 161, eds. B. Sagan and R. Stanley, 1998, 245–262 | MR | Zbl
[7] Garsia A., Tesler G., “Plethystic formulas for the Macdonald $q,t$-Kostka coefficients”, Adv. Math., 123 (1996), 144–222 | DOI | MR | Zbl
[8] Ion B., Sahi S., “Triple groups and Cherednik algebras”, Contemp. Math., 417 (2006), 183–206 ; math.QA/0304186 | MR | Zbl
[9] Kirillov A., Noumi M., “$q$-difference raising operators for Macdonald polynomials and the integrality of transition coefficients”, Algebraic Methods and $q$-Special Functions, CRM Proceedings and Lecture Notes, 22, 1999, 227–243 ; q-alg/9605005 | MR | Zbl
[10] Kirillov A., Noumi M., “Affine Hecke algebras and raising operators for Macdonald polynomials”, Duke Math. J., 93 (1998), 1–39 ; q-alg/9605004 | DOI | MR | Zbl
[11] Knop F., “Integrality of two variable Kostka functions”, J. Reine Angew. Math., 482 (1997), 177–189 ; q-alg/9603027 | MR | Zbl
[12] Koekoek R., Swarttouw R., The Askey-scheme of hypergeometric orthogonal polynomials and its $q$-analogue, Report no. 98-17, Delft University ofTechnology, Department of Technical Mathematics and Informatics, 1998; http://aw.twi.tudelft.nl/~koekoek/askey/ch3/par1/par1.html
[13] Koornwinder T., “Askey–Wilson polynomials for root systems of type BC”, Contemp. Math., 138 (1992), 189–204 | MR | Zbl
[14] Koornwinder T., “Lowering and raising operators for some special orthogonal polynomials”, Contemp. Math., 417 (2006), 227–238 | MR | Zbl
[15] Koornwinder T., “The structure relation for Askey–Wilson polynomials”, J. Comput. Appl. Math., 207:2 (2007), 214–226 ; math.CA/0601303 | DOI | MR | Zbl
[16] Lapointe L., Vinet L., “Creation operators for the Macdonald and Jack polynomials”, Lett. Math. Phys., 40 (1997), 269–286 | DOI | MR | Zbl
[17] Lapointe L., Vinet L., “Rodrigues formulas for the Macdonald polynomials”, Adv. Math., 130 (1997), 261–279 ; q-alg/9607025 | DOI | MR | Zbl
[18] Macdonald I., Affine Hecke algebras and orthogonal polynomials, Cambridge University Press, 2003 | MR | Zbl
[19] Noumi M., “Macdonald–Koornwinder polynomials and affine Hecke algebras”, RIMS Kokyuroku, 919 (1995), 44–55 (in Japanese) | MR | Zbl
[20] Noumi M., Stokman J., “Askey–Wilson polynomials: an affine Hecke algebra approach”, Laredo Lectures on Orthogonal Polynomials and Special Functions, Nova Science Publishers, eds. R. Alvarez-Nodarse, F. Marcellan and W. Van Assche, 2004, 111–144 ; math.QA/0001033 | MR | Zbl
[21] Sahi S., “Interpolation, integrality, and a generalization of Macdonald's polynomials”, Int. Math. Res. Not., no. 10 (1996), 457–471 | DOI | MR
[22] Sahi S., “Nonsymmetric Koornwinder polynomials and duality”, Ann. of Math., 150 (1999), 267–282 ; q-alg/9710032 | DOI | MR | Zbl
[23] Sahi S., “Some properties of Koornwinder polynomials”, Contemp. Math., 254 (2000), 395–411 | MR | Zbl
[24] Stokman J., “Koornwinder polynomials and affine Hecke algebras”, Int. Math. Res. Not., no. 19 (2000), 1005–1042 ; math.QA/0002090 | DOI | MR
[25] van Diejen J., “Self-dual Koornwinder–Macdonald polynomials”, Invent. Math., 126 (1996), 319–339 ; q-alg/9507033 | DOI | MR | Zbl