@article{SIGMA_2007_3_a0,
author = {Nickolay Sh. Izmailian and Vyatcheslav B. Priezzhev and Philippe Ruelle},
title = {Non-Local {Finite-Size} {Effects} in the {Dimer} {Model}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2007},
volume = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a0/}
}
TY - JOUR AU - Nickolay Sh. Izmailian AU - Vyatcheslav B. Priezzhev AU - Philippe Ruelle TI - Non-Local Finite-Size Effects in the Dimer Model JO - Symmetry, integrability and geometry: methods and applications PY - 2007 VL - 3 UR - http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a0/ LA - en ID - SIGMA_2007_3_a0 ER -
Nickolay Sh. Izmailian; Vyatcheslav B. Priezzhev; Philippe Ruelle. Non-Local Finite-Size Effects in the Dimer Model. Symmetry, integrability and geometry: methods and applications, Tome 3 (2007). http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a0/
[1] Fowler R. H., Rushbrooke G. S., “Statistical theory of perfect solutions”, Trans. Faraday Soc., 33 (1937), 1272–1294 | DOI
[2] Kasteleyn P. W., “The statistics of dimers on a lattice. I. The number of dimer arrangements on a quadratic lattice”, Physica, 27 (1961), 1209–1225 | DOI
[3] Kasteleyn P. W., “Dimer statistics and phase transitions”, J. Math. Phys., 4 (1963), 287–293 | DOI | MR
[4] Fisher M. E., “Statistical mechanics of dimers on a plane lattice”, Phys. Rev., 124 (1961), 1664–1672 | DOI | MR | Zbl
[5] Temperley H. N. V., Fisher M. E., “Dimer problem in statistical mechanics – an exact result”, Philos. Mag. (8), 6 (1961), 1061–1063 | DOI | MR | Zbl
[6] Fisher M. E., Stephenson J.,, “Statistical mechanics of dimers on a plane lattice. II. Dimer correlations and monomers”, Phys. Rev., 132 (1963), 1411–1431 | DOI | MR | Zbl
[7] Hartwig R. E., “Monomer pair correlations”, J. Math. Phys., 7 (1966), 286–299 | DOI | MR
[8] Fendley P., Moessner R., Sondhi S. L., “Classical dimers on the triangular lattice”, Phys. Rev. B, 66 (2002), 214513, 14 pp., ages ; cond-mat/0206159 | DOI | MR
[9] Basor E. L., Ehrhardt T., Asymptotics of block Toeplitz determinants and the classical dimer model, math-ph/0607065 | MR
[10] Tseng W. J., Wu F. Y., “Dimers on a simple-quartic net with a vacancy”, J. Statist. Phys., 110 (2003), 671–689 | DOI | MR
[11] Kong Y., “Logarithmic corrections in the free energy of monomer-dimer model on plane lattices with free boundaries”, Phys. Rev. E, 74 (2006), 011102, 8 pp., ages | DOI
[12] Wu F. Y., “Pfaffian solution of a dimer-monomer problem: single monomer on the boundary”, Phys. Rev. E, 74 (2006), 020140(R), 4 pp., ages ; Erratum Phys. Rev. E, 74 (2006), 020104(E) ; cond-mat/0607647 | MR | DOI
[13] Ferdinand A. E., “Statistical mechanics of dimers on a quadratic lattice”, J. Math. Phys., 8 (1967), 2332–2339 | DOI
[14] McCoy B. W., Wu T. T., The two-dimensional Ising model, Harvard University Press, Cambridge, MA, 1973
[15] Bhattacharjee S. M., Nagle F. F., “Finite-size effect for the critical point of an anisotropic dimer model of domain walls”, Phys. Rev. A, 31 (1985), 3199–3213 | DOI | MR
[16] Brankov J. G., Priezzhev V. B., “Critical free energy of a Möbius strip”, Nuclear Phys. B, 400 (1993), 633–652 | DOI | MR | Zbl
[17] Lu W. T., Wu F. Y., “Dimer statistics on the Möbius strip and the Klein bottle”, Phys. Lett. A, 259 (1999), 108–114 ; cond-mat/9906154 | DOI | MR | Zbl
[18] Lu W. T., Wu F. Y., “Close-packed dimers on nonorientable surfaces”, Phys. Lett. A, 293 (2002), 235–246 ; Erratum Phys. Lett. A, 298 (2002), 293 ; cond-mat/0110035 | DOI | MR | Zbl | DOI | MR
[19] Ivashkevich E., Izmailian N. Sh., Hu C.-K., “Kronecker's double series and exact asymptotic expansion for free models of statistical mechanics on torus”, J. Phys. A: Math. Gen., 35 (2002), 5543–5561 | DOI | MR | Zbl
[20] Izmailian N. Sh., Oganesyan K. B., Hu C.-K., “Exact finite-size corrections of the free energy for the square lattice dimer model under different boundary conditions”, Phys. Rev. E, 67 (2003), 066114, 14 pp., ages | DOI
[21] Izmailian N. Sh., Priezzhev V. B., Ruelle P., Hu C.-K., “Logarithmic conformal field theory and boundary effects in the dimer model”, Phys. Rev. Lett., 95 (2005), 260602, 4 pp., ages ; cond-mat/0512703 | DOI | MR
[22] Itzykson C., Saleur H., Zuber J.-B., “Conformal invariance of nonunitary 2d-models”, Europhys. Lett., 2 (1986), 91–96 | DOI
[23] Blote H. W. J., Hilhorst H. J., “Roughening transitions and the zero-temperature triangular Ising antiferromagent”, J. Phys. A: Math. Gen., 15 (1982), L631–L637 | DOI | MR
[24] Kenyon R., “Dominos and the Gaussian free field”, Ann. Probab., 29 (2001), 1128–1137 | DOI | MR | Zbl
[25] Baxter R. J., Exactly solved models in statistical mechanics, Academic Press, New York, 1982 | MR | Zbl
[26] Temperley H. N. V., “Combinatorics”, Proceedings of the British Combinatorial Conference, London Math. Soc. Lecture Notes Series, 13, 1974, 202–204 | MR
[27] Priezzhev V. B., “The dimer problem and the Kirchhoff theorem”, Sov. Phys. Usp., 28 (1985), 1125–1135 | DOI
[28] Blöte H. W., Cardy J. L., Nightingale M. P., “Conformal invariance, the central charge, and universal finite-size amplitudes at criticality”, Phys. Rev. Lett., 56 (1986), 742–745 | DOI
[29] Affleck I., “Universal term in the free energy at a critical point and the conformal anomaly”, Phys. Rev. Lett., 56 (1986), 746–748 | DOI | MR
[30] Cardy J. L., “Effect of boundary conditions on the operator content of two-dimensional conformally invariant theories”, Nuclear Phys. B, 275 (1986), 200–218 | DOI | MR
[31] Brankov J. G., “Isomorphism of dimer configurations and spanning trees on finite square lattices”, J. Math. Phys., 36 (1995), 5071–5083 | DOI | MR | Zbl
[32] Majumdar S. N., Dhar D., “Equivalence between the Abelian sandpile model and the $q\to0$ limit of the Potts model”, Phys. A, 185 (1992), 129–145 | DOI
[33] Ruelle P., “A $c=-2$ boundary changing operator for the Abelian sandpile model”, Phys. Lett. B, 539 (2002), 172–177 ; hep-th/0203105 | DOI | MR | Zbl
[34] Piroux G., Ruelle P., “Pre-logarithmic and logarithmic fields in a sandpile model”, J. Stat. Mech. Theory Exp., 2004, P10005, 24 pp., ages ; hep-th/0407143 | DOI | MR | Zbl
[35] Piroux G., Ruelle P., “Logarithmic scaling for height variables in the Abelian sandpile model”, Phys. Lett. B, 607 (2005), 188–196 ; cond-mat/0410253 | DOI
[36] Jeng M., Piroux G., Ruelle P., “Height variables in the Abelian sandpile model: scaling fields and correlations”, J. Stat. Mech. Theory Exp., 2006, P10015, 63 pp., ages ; cond-mat/0609284 | DOI
[37] Ghosh A., Dhar D., Jacobsen J. L., Random trimer tilings, cond-mat/0609322 | MR
[38] Priezzhev V. B., Ruelle P., “Boundary monomers in the dimer model”, Physical Review E, 77:6 (2008), 061126, 8 pp., ages | DOI | MR