Invariant Varieties of Periodic Points for the Discrete Euler Top
Symmetry, integrability and geometry: methods and applications, Tome 2 (2006) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The behaviour of periodic points of discrete Euler top is studied. We derive invariant varieties of periodic points explicitly. When the top is axially symmetric they are specified by some particular values of the angular velocity along the axis of symmetry, different for each period.
Keywords: invariant varieties of periodic points; discrete Euler top; integrable map.
@article{SIGMA_2006_2_a97,
     author = {Satoru Saito and Noriko Saitoh},
     title = {Invariant {Varieties} of {Periodic} {Points} for the {Discrete} {Euler} {Top}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2006},
     volume = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a97/}
}
TY  - JOUR
AU  - Satoru Saito
AU  - Noriko Saitoh
TI  - Invariant Varieties of Periodic Points for the Discrete Euler Top
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2006
VL  - 2
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a97/
LA  - en
ID  - SIGMA_2006_2_a97
ER  - 
%0 Journal Article
%A Satoru Saito
%A Noriko Saitoh
%T Invariant Varieties of Periodic Points for the Discrete Euler Top
%J Symmetry, integrability and geometry: methods and applications
%D 2006
%V 2
%U http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a97/
%G en
%F SIGMA_2006_2_a97
Satoru Saito; Noriko Saitoh. Invariant Varieties of Periodic Points for the Discrete Euler Top. Symmetry, integrability and geometry: methods and applications, Tome 2 (2006). http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a97/

[1] Kuznetsov V. B., Nijhoff F. W. (ed.), “Kowalevski workshop on mathematical methods of regular dynamics”, J. Phys. A: Math. Gen., 34:11 (2001), 2071–2524 | DOI | MR | Zbl

[2] Kuznetsov V. B., Kowalevski top revisited, nlin.SI/0110012 | MR

[3] Saito S., Saitoh N., “Invariant varieties of periodic points for some higher dimensional integrable maps”, J. Phys. Soc. Japan, 76:2 (2007), 024006 ; math-ph/0610069 | DOI

[4] Bobenko A. I., Lorbeer B., Suris Yu. B., “Integrable discretization of the Euler map”, J. Math. Phys. A: Math. Gen., 39 (1988), 6668–6683 | MR

[5] Hirota R., Kimura K., “Discretization of the Euler top”, J. Phys. Soc. Japan, 69 (2000), 627–630 | DOI | MR | Zbl

[6] Hirota R., Takahashi D., Discrete and ultradiscrete systems, Kyoritsu Shuppan, Tokyo, 2003 (in Japanese)

[7] Fedorov Yu., “Integrable flows and Bäcklund transformations on extended Stiefel varieties with application to the Euler top on the Lie group $SO(3)$”, J. Nonlinear Math. Phys., 12 (2005), 77–94 ; nlin.SI/0505045 | DOI | MR | Zbl

[8] Marsden J., West M., “Discrete mechanics and variational integrators”, Acta Numerica, 10 (2001), 357–514 | DOI | MR | Zbl