@article{SIGMA_2006_2_a97,
author = {Satoru Saito and Noriko Saitoh},
title = {Invariant {Varieties} of {Periodic} {Points} for the {Discrete} {Euler} {Top}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2006},
volume = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a97/}
}
Satoru Saito; Noriko Saitoh. Invariant Varieties of Periodic Points for the Discrete Euler Top. Symmetry, integrability and geometry: methods and applications, Tome 2 (2006). http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a97/
[1] Kuznetsov V. B., Nijhoff F. W. (ed.), “Kowalevski workshop on mathematical methods of regular dynamics”, J. Phys. A: Math. Gen., 34:11 (2001), 2071–2524 | DOI | MR | Zbl
[2] Kuznetsov V. B., Kowalevski top revisited, nlin.SI/0110012 | MR
[3] Saito S., Saitoh N., “Invariant varieties of periodic points for some higher dimensional integrable maps”, J. Phys. Soc. Japan, 76:2 (2007), 024006 ; math-ph/0610069 | DOI
[4] Bobenko A. I., Lorbeer B., Suris Yu. B., “Integrable discretization of the Euler map”, J. Math. Phys. A: Math. Gen., 39 (1988), 6668–6683 | MR
[5] Hirota R., Kimura K., “Discretization of the Euler top”, J. Phys. Soc. Japan, 69 (2000), 627–630 | DOI | MR | Zbl
[6] Hirota R., Takahashi D., Discrete and ultradiscrete systems, Kyoritsu Shuppan, Tokyo, 2003 (in Japanese)
[7] Fedorov Yu., “Integrable flows and Bäcklund transformations on extended Stiefel varieties with application to the Euler top on the Lie group $SO(3)$”, J. Nonlinear Math. Phys., 12 (2005), 77–94 ; nlin.SI/0505045 | DOI | MR | Zbl
[8] Marsden J., West M., “Discrete mechanics and variational integrators”, Acta Numerica, 10 (2001), 357–514 | DOI | MR | Zbl