On the Darboux–Nijenhuis Variables for the Open Toda Lattice
Symmetry, integrability and geometry: methods and applications, Tome 2 (2006) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We discuss two known constructions proposed by Moser and by Sklyanin of the Darboux–Nijenhuis coordinates for the open Toda lattice.
Keywords: bi-Hamiltonian systems; Toda lattice.
@article{SIGMA_2006_2_a96,
     author = {Yuriy A. Grigoryev and Andrey V. Tsiganov},
     title = {On the {Darboux{\textendash}Nijenhuis} {Variables} for the {Open} {Toda} {Lattice}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2006},
     volume = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a96/}
}
TY  - JOUR
AU  - Yuriy A. Grigoryev
AU  - Andrey V. Tsiganov
TI  - On the Darboux–Nijenhuis Variables for the Open Toda Lattice
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2006
VL  - 2
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a96/
LA  - en
ID  - SIGMA_2006_2_a96
ER  - 
%0 Journal Article
%A Yuriy A. Grigoryev
%A Andrey V. Tsiganov
%T On the Darboux–Nijenhuis Variables for the Open Toda Lattice
%J Symmetry, integrability and geometry: methods and applications
%D 2006
%V 2
%U http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a96/
%G en
%F SIGMA_2006_2_a96
Yuriy A. Grigoryev; Andrey V. Tsiganov. On the Darboux–Nijenhuis Variables for the Open Toda Lattice. Symmetry, integrability and geometry: methods and applications, Tome 2 (2006). http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a96/

[1] Atiyah M., Hitchin N., The geometry and dynamics of magnetic monopoles, M. B. Porter Lectures, Princeton Univ. Press, Princeton, NJ, 1988 | MR | Zbl

[2] Das A., Okubo S.,, “A systematic study of the Toda lattice”, Ann. Phys., 30 (1989), 215–232 | MR

[3] Falqui G., Magri F., Pedroni M., “Bihamiltonian geometry and separation of variables for Toda lattices”, J. Nonlinear Math. Phys., 8 (2001), 118–127 ; nlin.SI/0002008 | DOI | MR | Zbl

[4] Falqui G., Pedroni M., “Separation of variables for bi-Hamiltonian systems”, Math. Phys. Anal. Geom., 6 (2003), 139–179 ; nlin.SI/0204029 | DOI | MR | Zbl

[5] Faybusovich L., Gekhtman M., “Poisson brackets on rational functions and multi Hamiltonian structures for integrable lattices”, Phys. Lett. A, 272 (2000), 236–244 ; nlin.SI/0006045 | DOI | MR | Zbl

[6] Fernandes R. L., “On the master symmetries and bi-Hamiltonian structure of the Toda lattice”, J. Phys. A: Math. Gen., 26 (1993), 3797–3803 | DOI | MR | Zbl

[7] Flaschka H., McLaughlin D. W., “Canonically conjugate variables for the Korteweg–de Vries equation and the Toda lattice with periodic boundary conditions”, Progr. Theoret. Phys., 55 (1976), 438–456 | DOI | MR | Zbl

[8] Fokas A., Fuchssteiner B., “Symplectic structures, Bäcklund transformations and hereditary symmetries”, Phys. D, 4 (1981), 47–66 | DOI | MR

[9] Frölicher A., Nijenhuis A., “Theory of vector-valued differential forms. I. Derivations of the graded ring of differential forms”, Nederl. Akad. Wetensch. Proc. Ser. A, 59 (1956), 338–359 | MR | Zbl

[10] Gelfand I. M., Dorfman I. Ya., “Hamiltonian operators and algebraic structures associated with them”, Funktsional. Anal. i Prilozhen., 13:4 (1979), 13–30 | MR

[11] Gelfand I. M., Zakharevich I., “On the local geometry of a bi-Hamiltonian structure”, The Gelfand Mathematical Seminars 1990–1992, eds. L. Corwin et al., Birkhäuser, Boston, 1993, 51–112 | MR | Zbl

[12] Krein M. G., Naimark M. A., “The method of symmetric and Hermitian forms in the theory of the separation of the roots of algebraic equations”, Linear and Multilinear Algebra, 10:4 (1981), 265–308, translated from the Russian by O. Boshko and J. L. Howland | DOI | MR | Zbl

[13] Kosmann-Schwarzbach Y., Magri F., “Poisson–Nijenhuis structures”, Ann. Inst. Poincaré (Phys. Theor.), 53 (1990), 35–81 | MR | Zbl

[14] Komarov I. V., Tsiganov A. V., “Two particle quantum periodic Toda lattice”, Vestnik Leningrad Univ., 2 (1988), 69–71

[15] Levi-Civita T., “Integrazione delle equazione di Hamilton–Jacobi per separazione di variabili”, Math. Ann., 24 (1904), 383–397 | DOI | MR

[16] Magri F., “Geometry and soliton equations”, La Mécanique Analytique de Lagrange et son héritage, Atti Acc. Sci. Torino Suppl., 24, 1990, 181–209

[17] Magri F., “Eight lectures on integrable systems”, Integrability of Nonlinear Systems (1996, Pondicherry), Lecture Notes in Phys., 495, Springer, Berlin, 1997, 256–296 | MR | Zbl

[18] Moser J., “Finitely many mass points on the line under the influence of an exponential potential – an integrable system”, Dynamical Systems, Theory and Applications (1974, Rencontres, Battelle Res. Inst., Seattle, Wash.), Lecture Notes in Phys., 38, Springer, Berlin, 1975, 467–497 | MR

[19] Sklyanin E. K., “The quantum Toda chain”, Nonlinear Equations in Classical and Quantum Field Theory (1983/1984, Meudon/Paris), Lecture Notes in Phys., 226, Springer, Berlin, 1985, 196–293 | MR

[20] Sklyanin E. K., “Separation of variables – new trends”, Quantum Field Theory, Integrable Models and Beyond (1994, Kyoto), Progr. Theoret. Phys. Suppl., 118, 1995, 35–60 ; solv-int/9504001 | MR | Zbl

[21] Smirnov F. A., “Structure of matrix elements in quantum Toda chain”, J. Phys. A: Math. Gen., 31 (1998), 8953–8971 ; math-ph/9805011 | DOI | MR | Zbl

[22] Stieltjes T., “Recherches sur les fractions continues”, Ann. de Toulouse, 8 (1894), 1–122 ; 9 (1895), 1–47 | MR | Zbl | MR

[23] Tsiganov A. V., “On the invariant separated variables”, Regul. Chaotic Dyn., 6 (2001), 307–326 | DOI | MR | Zbl

[24] Tsiganov A. V., “Darboux–Nijenhuis variables for open generalized Toda chains”, Theoret. and Math. Phys., 152:3 (2007), 1243–1257 | DOI | MR | Zbl

[25] Vaninsky K. L., “The Atiyah–Hitchin bracket and the open Toda Lattice”, J. Geom. Phys., 46 (2003), 283–307 ; math-ph/0202047 | DOI | MR | Zbl