@article{SIGMA_2006_2_a95,
author = {Runliang Lin and Haishen Yao and Yunbo Zeng},
title = {Restricted {Flows} and the {Soliton} {Equation} with {Self-Consistent} {Sources}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2006},
volume = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a95/}
}
TY - JOUR AU - Runliang Lin AU - Haishen Yao AU - Yunbo Zeng TI - Restricted Flows and the Soliton Equation with Self-Consistent Sources JO - Symmetry, integrability and geometry: methods and applications PY - 2006 VL - 2 UR - http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a95/ LA - en ID - SIGMA_2006_2_a95 ER -
Runliang Lin; Haishen Yao; Yunbo Zeng. Restricted Flows and the Soliton Equation with Self-Consistent Sources. Symmetry, integrability and geometry: methods and applications, Tome 2 (2006). http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a95/
[1] Mel'nikov V. K., “Integration method of the Korteweg–de Vries equation with a self-consistent source”, Phys. Lett. A, 133 (1988), 493–496 | DOI | MR
[2] Shchesnovich V. S., Doktorov E. V., “Modified Manakov system with self-consistent source”, Phys. Lett. A, 213 (1996), 23–31 | DOI | MR | Zbl
[3] Urazboev G. U., Khasanov A. B., “Integrating the Korteweg–de Vries equation with a self-consistent source and “steplike” initial data”, Theoret. and Math. Phys., 129 (2001), 1341–1356 | DOI | MR
[4] Zeng Y. B., “New factorization of the Kaup–Newell hierarchy”, Phys. D, 73 (1994), 171–188 | DOI | MR | Zbl
[5] Lin R. L., Zeng Y. B., Ma W. X., “Solving the KdV hierarchy with self-consistent sources by inverse scattering method”, Phys. A, 291 (2001), 287–298 | DOI | MR | Zbl
[6] Zeng Y. B., Ma W.-X., Lin R. L., “Integration of the soliton hierarchy with self-consistent sources”, J. Math. Phys., 41 (2000), 5453–5489 | DOI | MR | Zbl
[7] Zeng Y. B., Shao Y. J., Xue W. M., “Negaton and positon solutions of the soliton equation with self-consistent sources”, J. Phys. A: Math. Gen., 36 (2003), 5035–5043 | DOI | MR | Zbl
[8] Ma W. X., “Complexiton solutions of the Korteweg–de Vries equation with self-consistent sources”, Chaos Solitons Fractals, 26 (2005), 1453–1458 | DOI | MR | Zbl
[9] Hu X. B., “The higher-order KdV equation with a source and nonlinear superposition formula”, Chaos Solitons Fractals, 7 (1996), 211–215 | DOI | MR
[10] Zhang D. J., Chen D. Y., “The $N$-soliton solutions of the sine-Gordon equation with self-consistent sources”, Phys. A, 321 (2003), 467–481 | DOI | MR | Zbl
[11] Gegenhasi, Hu X. B., “On a integrable differential-difference equation with a source”, J. Nonlinear Math. Phys., 13 (2006), 183–192 | DOI | MR | Zbl
[12] Zeng Y. B., “Bi-Hamiltonian structure of JM hierarchy with self-consistent sources”, Phys. A, 262 (1999), 405–419 | DOI | MR
[13] Zeng Y. B., Lin R. L., Wang X. H., “Bi-Hamiltonian structure of the KdV hierarchy with self-consistent sources”, Adv. Math. (China), 27 (1998), 451–463 | MR | Zbl
[14] Zeng Y. B., Li Y. S., “The deduction of the Lax representation for constrained flows from the adjoint representation”, J. Phys. A: Math. Gen., 26 (1993), L273–L278 | DOI | MR | Zbl
[15] Matveev V. B., Salle M. A., Darboux transformations and solitons, Springer, Berlin, 1991 | MR
[16] Kuznetsov V. B., Sklyanin E.K., “On Bäcklund transformations for many-body systems”, J. Phys. A: Math. Gen., 31 (1998), 2241–2251 ; solv-int/9711010 | DOI | MR | Zbl
[17] Hone A. N. W., Kuznetsov V. B., Ragnisco O., “Bäcklund transformations for many-body systems related to KdV”, J. Phys. A: Math. Gen., 32 (1999), L299–L306 ; solv-int/9904003 | DOI | MR | Zbl
[18] Hone A. N. W., Kuznetsov V. B., Ragnisco O., “Bäcklund transformations for the Hénon–Heiles and Garnier systems”, Proceedings of the SIDE III (1998, Sabaudia), CRM Proceedings and Lecture Notes Series, 25, eds. D. Levi and O. Ragnisco, American Mathematical Society, 2000, 231–235 | MR | Zbl
[19] Newell A. C., Solitons in mathematics and physics, SIAM, Philadelphia, 1985 | MR