@article{SIGMA_2006_2_a93,
author = {Aiyalam P. Balachandran and Babar Ahmed Qureshi},
title = {Noncommutative {Geometry:} {Fuzzy} {Spaces,} the {Groenewold{\textendash}Moyal} {Plane}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2006},
volume = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a93/}
}
TY - JOUR AU - Aiyalam P. Balachandran AU - Babar Ahmed Qureshi TI - Noncommutative Geometry: Fuzzy Spaces, the Groenewold–Moyal Plane JO - Symmetry, integrability and geometry: methods and applications PY - 2006 VL - 2 UR - http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a93/ LA - en ID - SIGMA_2006_2_a93 ER -
Aiyalam P. Balachandran; Babar Ahmed Qureshi. Noncommutative Geometry: Fuzzy Spaces, the Groenewold–Moyal Plane. Symmetry, integrability and geometry: methods and applications, Tome 2 (2006). http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a93/
[1] Connes A., Noncommutative geometry, Academic Press, San Diego, CA, 1994 | MR | Zbl
[2] Varilly J. C., Figueroa H., Gracia-Bondia J. M., Elements of noncommutative geometry, Birkhäuser, Boston, 2000 | MR
[3] Landi G., Introduction to noncommutative spaces and their geometries, Springer Verlag, New York, 1997 | MR
[4] Jackiw R., “Physical instances of noncommuting coordinates”, Nuclear Phys. Proc. Suppl., 108 (2002), 30–36 ; hep-th/0110057 | DOI | MR | Zbl
[5] Pauli W., “Letter of Heisenberg to Peirels (1930)”, Wolfgang Pauli, Scientific Correspondence, Vol. II, Springer Verlag, 1985, 15–15 | MR
[6] Snyder H., “Quantized space-time”, Phys. Rev., 71 (1947), 38–41 | DOI | MR | Zbl
[7] Yang C. N., “On quantized space-time”, Phys. Rev., 72 (1947), 874–874 | DOI | MR | Zbl
[8] Doplicher S., Fredenhagen K., Roberts J., “Space-time quantization induced by classical gravity”, Phys. Lett. B, 331 (1994), 39–44 | DOI | MR
[9] Doplicher S., Fredenhagen K., Roberts J., “The quantum structure of space-time at the Planck scale and quantum fields”, Comm. Math. Phys., 172 (1995), 187–220 ; hep-th/0303037 | DOI | MR | Zbl
[10] Connes A., Landi G., “Noncommutative manifolds: the instanton algebra and isospectral deformations”, Comm. Math. Phys., 221 (2001), 141–159 ; math.QA/0011194 | DOI | MR | Zbl
[11] Balachandran A. P., Kurkcuoglu S., Vaidya S., Lectures on fuzzy and fuzzy susy physics, World Scientific, Hackensack, NJ, 2007; hep-th/0511114
[12] Hoppe J., Quantum theory of a massless relativistic surface and a two dimensional bound state problem, PhD Thesis, MIT, 1982
[13] Madore J., “The fuzzy sphere”, Classical Quantum Gravity, 9 (1992), 69–88 | DOI | MR
[14] Madore J., An introduction to non-commutative differential geometry and its physical applications, Cambridge University Press, Cambridge, 1995 | MR | Zbl
[15] Martin X., “A matrix phase for the $\phi^4$ scalar field on the fuzzy sphere”, JHEP, 4 (2004), Paper 077, 15 pp., ages ; hep-th/0402230 | MR
[16] Flores F. G., O'Connor D., Martin X., “Simulating the scalar field on the fuzzy sphere”, Proceedings for the XXIIIrd International Symposium on Lattice Field Theory, 2006, PoSLat2005, 262, 6 pp., ages; hep-lat/0601012
[17] Gubser S. S., Sondhi S. L., “Phase structure of non-commutative scalar field theories”, Nuclear Phys. B, 605 (2001), 395–424 ; hep-th/0006119 | DOI | MR | Zbl
[18] Ambjorn J., Catterall S., “Stripes from (noncommutative) stars”, Phys. Lett. B, 549 (2002), 253–259 ; hep-lat/0209106 | DOI | MR
[19] Medina J., Bietenholz W., Hofheinz F., O'Connor D., “Field theory simulations on a fuzzy sphere – an alternative to the lattice”, Proceedings for the XXIIIrd International Symposium on Lattice Field Theory, 2006, PoSLAT2005, 263, 6 pp., ages; hep-lat/0509162
[20] Grosse H., Klimčik C., Prešnajder P., “Field theory on a supersymmetric lattice”, Comm. Math. Phys., 185 (1997), 155–175 ; hep-th/9507074 | DOI | MR | Zbl
[21] Grosse H., Klimčik C., Prešnajder P., $N=2$ superalgebra and non-commutative geometry, hep-th/9603071 | MR
[22] Balachandran A. P., Immirzi G., “The fuzzy Ginsparg–Wilson algebra: a solution of the fermion doubling problem”, Phys. Rev. D, 68 (2003), 065023, 7 pp., ages ; hep-th/0301242 | DOI | MR
[23] Carow-Watamura U., Watamura S., “Chirality and Dirac operator on noncommutative sphere”, Comm. Math. Phys., 183 (1997), 365–382 ; hep-th/9605003 | DOI | MR | Zbl
[24] Baez S., Balachandran A. P., Ydri B., Vaidya S., “Monopoles and solitons in fuzzy physics”, Comm. Math. Phys., 208 (2000), 787–798 ; hep-th/9811169 | DOI | MR | Zbl
[25] Balachandran A. P., Govindarajan T. R., Ydri B., “The fermion doubling problem and noncommutative geometry”, Modern Phys. Lett. A, 15 (2000), 1279–1286 ; hep-th/9911087 | DOI | MR
[26] Balachandran A. P., Govindarajan T. R., Ydri B., Fermion doubling problem and noncommutative geometry II, hep-th/0006216 | MR
[27] Grosse H., Reiter G., “The fuzzy supersphere”, J. Geom. Phys., 28 (1998), 349–383 ; math-ph/9804013 | DOI | MR | Zbl
[28] Klimčik C., “A nonperturbative regularization of the supersymmetric Schwinger model”, Comm. Math. Phys., 206 (1999), 567–586 ; hep-th/9903112 | DOI | MR | Zbl
[29] Klimčik C., “An extended fuzzy supersphere and twisted chiral superfields”, Comm. Math. Phys., 206 (1999), 587–601 ; hep-th/9903202 | DOI | MR | Zbl
[30] Balachandran A. P., Kurkcuoglu S., Rojas E., “The star product on the fuzzy supersphere”, JHEP, 7 (2002), Paper 056, 21 pp., ages ; hep-th/0204170 | MR
[31] Balachandran A. P., Pinzul A., Qureshi B., “SUSY anomalies break $N=2$ to $N=1$: the supersphere and the fuzzy supersphere”, JHEP, 12 (2005), Paper 002, 14 pp., ages ; hep-th/0506037 | MR
[32] Kurkcuoglu S., “Non-linear sigma model on the fuzzy supersphere”, JHEP, 3 (2004), Paper 062, 11 pp., ages ; hep-th/0311031 | MR
[33] Szabo R. J., D-branes in noncommutative field theory, hep-th/0512054 | MR
[34] Ezawa Z. F., Tsitsishvili G., Hasebe K., “Noncommutative geometry, extended $W_\infty$ algebra and Grassmannian solitons in multicomponent quantum Hall systems”, Phys. Rev. B, 67 (2003), 125314, 15 pp., ages ; hep-th/0209198 | DOI
[35] Seiberg N., Witten E., “String theory and noncommutative geometry”, JHEP, 9 (1999), Paper 032, 100 pp., ages ; hep-th/9908142 | MR | Zbl
[36] Minwala S., van Raamsdonk M., Seiberg N., “Noncommutative perturbative dynamics”, JHEP, 2 (2000), Paper 020, 33 pp., ages ; hep-th/9912072
[37] Chaichian M., Kulish P. P., Nishijima K., Tureanu A., “On a Lorentz-invariant interpretation of noncommutative space-time and its implications on noncommutative QFT”, Phys. Lett. B, 604 (2004), 98–102 ; hep-th/0408069 | DOI | MR
[38] Chaichian M., Presnajder P., Tureanu A., “New concept of relativistic invariance in NC space-time: twisted Poincaré symmetry and its implications”, Phys. Rev. Lett., 94 (2005), 151602, 15 pp., ages ; hep-th/0409096 | DOI
[39] Dimitrijevic M., Wess J., Deformed bialgebra of diffeomorphisms, hep-th/0411224
[40] Aschieri P., Blohmann C., Dimitrijevic M., Meyer F., Schupp P., Wess J., “A gravity theory on noncommutative spaces”, Classical Quantum Gravity, 22 (2005), 3511–3532 ; hep-th/0504183 | DOI | MR | Zbl
[41] Drinfel'd V. G., “Quasi Hopf algebras”, Leningrad Math. J., 1 (1990), 1419–1457 | MR
[42] Balachandran A. P., Mangano G., Pinzul A., Vaidya S., “Spin and statistics on the Groenewold–Moyal plane: Pauli–Forbidden levels and transitions”, Internat. J. Modern Phys. A, 21 (2006), 3111–3126 ; hep-th/0508002 | DOI | MR | Zbl
[43] Qureshi B. A., Twisted supersymmetry, fermion-boson mixing and removal of UV-IR mixing, hep-th/0602040
[44] Tureanu A., “Twist and spin-statistics relation in noncommutative quantum field theory”, Phys. Lett. B, 638 (2006), 296–301 ; hep-th/0603219 | DOI | MR
[45] Zahn J., “Remarks on twisted noncommutative quantum field theory”, Phys. Rev. D, 73 (2006), 105005, 13 pp., ages ; hep-th/0603231 | DOI | MR
[46] Balachandran A. P., Govindarajan T. R., Mangano G., Pinzul A., Qureshi B. A., Vaidya S., Statistics and UV-IR mixing with twisted Poincaré invariance, hep-th/0608179
[47] Majid S., Foundations of quantum group theory, Cambridge University Press, 1995 | MR | Zbl
[48] Oeckl R., “Untwisting noncommutative $R^d$ and the equivalence of quantum field theories”, Nuclear Phys. B, 581 (2000), 559–574 ; hep-th/0003018 | DOI | MR | Zbl
[49] Fiore G., Schupp P., “Statistics and quantum group symmetries”, Quantum Groups and Quantum Spaces, Banach Centre Publications, 40, Institute of Mathematics, Polish Academy of Sciences, Warszawa, 1997, 369–377 | MR | Zbl
[50] Fiore G., “Deforming maps and Lie group covariant creation and annihilation operators”, J. Math. Phys., 39 (1998), 3437–3452 ; q-alg/9610005 | DOI | MR | Zbl
[51] Fiore G., Schupp P., “Identical particles and quantum symmetries”, Nuclear Phys. B, 470 (1996), 211–235 ; hep-th/9508047 | DOI | MR | Zbl
[52] Watts P., “Noncommutative string theory, the $R$-matrix and Hopf algebras”, Phys. Lett. B, 474 (2000), 295–302 ; hep-th/9911026 | DOI | MR | Zbl
[53] Watts P., Derivatives and the role of the Drinfel'd twist in noncommutative string theory, hep-th/0003234
[54] Balachandran A. P., Pinzul A., Qureshi B. A., “UV-IR mixing in non-commutative plane”, Phys. Lett. B, 634 (2006), 434–436 ; hep-th/0508151 | DOI | MR
[55] Balachandran A. P., Pinzul A., Qureshi B. A., Vaidya S., Poincaré invariant gauge and gravity theories on the Groenewold–Moyal plane, hep-th/0608138