@article{SIGMA_2006_2_a92,
author = {Vsevolod E. Adler and Alexey B. Shabat},
title = {On the {One} {Class} of {Hyperbolic} {Systems}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2006},
volume = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a92/}
}
Vsevolod E. Adler; Alexey B. Shabat. On the One Class of Hyperbolic Systems. Symmetry, integrability and geometry: methods and applications, Tome 2 (2006). http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a92/
[1] Ruijsenaars S. N. M., Relativistic Toda system, Preprint, Stichting Centre for Mathematics and Computer Sciences, Amsterdam, 1986
[2] Ruijsenaars S. N. M., “Relativistic Toda systems”, Comm. Math. Phys., 133 (1990), 217–247 | DOI | MR | Zbl
[3] Bruschi M., Ragnisco O., “On a new integrable Hamiltonian system with nearest-neighbour interaction”, Inverse Problems, 5 (1989), 983–998 | DOI | MR | Zbl
[4] Suris Yu. B., “Discrete time generalized Toda lattices: complete integrability and relation with relativistic Toda lattices”, Phys. Lett. A, 145 (1990), 113–119 | DOI | MR
[5] Adler V. E., Shabat A. B., “On the one class of the Toda chains”, Theor. Math. Phys., 111:3 (1997), 647–657 | DOI | MR | Zbl
[6] Adler V. E., Shabat A. B., “Generalized Legendre transformations”, Theor. Math. Phys., 112:2 (1997), 935–948 | DOI | MR
[7] Adler V. E., Shabat A. B., “First integrals of the generalized Toda chains”, Theor. Math. Phys., 115:3 (1998), 639–646 | DOI | MR | Zbl
[8] Marikhin V. G., Shabat A. B., “Integrable lattices”, Theor. Math. Phys., 118:2 (1999), 173–182 | DOI | MR | Zbl
[9] Adler V. E., Marikhin V. G., Shabat A. B., “Lagrangian Chains and Canonical Bäcklund Transformations”, Theor. Math. Phys., 129:2 (2001), 1448–1465 | DOI | MR | Zbl
[10] Ragnisco O., Santini P. M., “A unified algebraic approach to integral and discrete evolution equations”, Inverse Problems, 6 (1990), 441–452 | DOI | MR | Zbl
[11] Shabat A. B., Yamilov R. I., “Symmetries of nonlinear lattices”, Leningrad Math. J., 2 (1991), 377–400 | MR | Zbl
[12] Adler V. E., Yamilov R. I., “Explicit auto-transformations of integrable chains”, J. Phys. A: Math. Gen., 27 (1994), 477–492 | DOI | MR | Zbl
[13] Yamilov R. I., Symmetry approach to the classification from the point of view of the differential-difference equations. Theory of transformations, Doctoral Thesis, Ufa, 2000
[14] Adler V. E., Shabat A. B., Yamilov R. I., “Symmetry approach to the integrability problem”, Theor. Math. Phys., 125:3 (2000), 1603–1661 | DOI | MR | Zbl
[15] Adler V. E., “Discretizations of the Landau–Lifshitz equation”, Theor. Math. Phys., 124:1 (2000), 897–908 | DOI | MR | Zbl
[16] Hirota R., “Nonlinear partial difference equations. II. Discrete-time Toda equation”, J. Phys. Soc. Japan, 43 (1977), 2074–2078 | DOI | MR
[17] Suris Yu. B., “Bi-Hamiltonian structure of the $qd$ algorithm and new discretizations of the Toda lattice”, Phys. Lett. A, 206 (1995), 153–161 | DOI | MR | Zbl
[18] Adler V. E., “On the structure of the Bäcklund transformations for the relativistic lattices”, J. Nonlinear Math. Phys., 7 (2000), 34–56 ; nlin.SI/0001072 | DOI | MR | Zbl
[19] Adler V. E., Suris Yu. B., “$Q_4$: Integrable master equation related to an elliptic curve”, Internat. Math. Res. Not., 47 (2004), 2523–2553 ; nlin.SI/0309030 | DOI | MR | Zbl
[20] Zhiber A. V., Ibragimov N. H., Shabat A. B., “Liouville type equations”, DAN SSSR, 249 (1979), 26–29 | MR | Zbl
[21] Sokolov V. V., Zhiber A. V., “On the Darboux integrable hyperbolic equations”, Phys. Lett. A, 208 (1995), 303–308 | DOI | MR | Zbl
[22] Zhiber A. V., Sokolov V. V., “Exactly solvable hyperbolic equations of the Liouville type”, Uspekhi Mat. Nauk, 56:1(337) (2001), 63–106 | MR | Zbl
[23] Yamilov R. I., “On classification of discrete evolution equations”, Uspekhi Mat. Nauk, 38:6 (1983), 155–156
[24] Adler V. E., Shabat A. B., “Dressing chain for the acoustic spectral problem”, Theor. Math. Phys., 149:1 (2006), 1324–1337 ; nlin.SI/0604008 | DOI | MR | Zbl
[25] Nijhoff F., Hone A., Joshi N., “On a Schwarzian PDE associated with the KdV hierarchy”, Phys. Lett. A, 267 (2000), 147–156 ; solv-int/9909026 | DOI | MR | Zbl
[26] Svinolupov S. I., Yamilov R.I.,, “The multi-field Schrödinger lattices”, Phys. Lett. A, 160 (1991), 548–552 | DOI | MR
[27] Merola I., Ragnisco O., Tu G.-Z., “A novel hierarchy of integrable lattices”, Inverse Problems, 10 (1994), 1315–1334 ; solv-int/9401005 | DOI | MR | Zbl