On the One Class of Hyperbolic Systems
Symmetry, integrability and geometry: methods and applications, Tome 2 (2006) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The classification problem is solved for some type of nonlinear lattices. These lattices are closely related to the lattices of Ruijsenaars–Toda type and define the Bäcklund auto-transformations for the class of two-component hyperbolic systems.
Keywords: hyperbolic systems; Bäcklund transformations; Ruijsenaars–Toda lattice; discrete Toda lattice.
@article{SIGMA_2006_2_a92,
     author = {Vsevolod E. Adler and Alexey B. Shabat},
     title = {On the {One} {Class} of {Hyperbolic} {Systems}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2006},
     volume = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a92/}
}
TY  - JOUR
AU  - Vsevolod E. Adler
AU  - Alexey B. Shabat
TI  - On the One Class of Hyperbolic Systems
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2006
VL  - 2
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a92/
LA  - en
ID  - SIGMA_2006_2_a92
ER  - 
%0 Journal Article
%A Vsevolod E. Adler
%A Alexey B. Shabat
%T On the One Class of Hyperbolic Systems
%J Symmetry, integrability and geometry: methods and applications
%D 2006
%V 2
%U http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a92/
%G en
%F SIGMA_2006_2_a92
Vsevolod E. Adler; Alexey B. Shabat. On the One Class of Hyperbolic Systems. Symmetry, integrability and geometry: methods and applications, Tome 2 (2006). http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a92/

[1] Ruijsenaars S. N. M., Relativistic Toda system, Preprint, Stichting Centre for Mathematics and Computer Sciences, Amsterdam, 1986

[2] Ruijsenaars S. N. M., “Relativistic Toda systems”, Comm. Math. Phys., 133 (1990), 217–247 | DOI | MR | Zbl

[3] Bruschi M., Ragnisco O., “On a new integrable Hamiltonian system with nearest-neighbour interaction”, Inverse Problems, 5 (1989), 983–998 | DOI | MR | Zbl

[4] Suris Yu. B., “Discrete time generalized Toda lattices: complete integrability and relation with relativistic Toda lattices”, Phys. Lett. A, 145 (1990), 113–119 | DOI | MR

[5] Adler V. E., Shabat A. B., “On the one class of the Toda chains”, Theor. Math. Phys., 111:3 (1997), 647–657 | DOI | MR | Zbl

[6] Adler V. E., Shabat A. B., “Generalized Legendre transformations”, Theor. Math. Phys., 112:2 (1997), 935–948 | DOI | MR

[7] Adler V. E., Shabat A. B., “First integrals of the generalized Toda chains”, Theor. Math. Phys., 115:3 (1998), 639–646 | DOI | MR | Zbl

[8] Marikhin V. G., Shabat A. B., “Integrable lattices”, Theor. Math. Phys., 118:2 (1999), 173–182 | DOI | MR | Zbl

[9] Adler V. E., Marikhin V. G., Shabat A. B., “Lagrangian Chains and Canonical Bäcklund Transformations”, Theor. Math. Phys., 129:2 (2001), 1448–1465 | DOI | MR | Zbl

[10] Ragnisco O., Santini P. M., “A unified algebraic approach to integral and discrete evolution equations”, Inverse Problems, 6 (1990), 441–452 | DOI | MR | Zbl

[11] Shabat A. B., Yamilov R. I., “Symmetries of nonlinear lattices”, Leningrad Math. J., 2 (1991), 377–400 | MR | Zbl

[12] Adler V. E., Yamilov R. I., “Explicit auto-transformations of integrable chains”, J. Phys. A: Math. Gen., 27 (1994), 477–492 | DOI | MR | Zbl

[13] Yamilov R. I., Symmetry approach to the classification from the point of view of the differential-difference equations. Theory of transformations, Doctoral Thesis, Ufa, 2000

[14] Adler V. E., Shabat A. B., Yamilov R. I., “Symmetry approach to the integrability problem”, Theor. Math. Phys., 125:3 (2000), 1603–1661 | DOI | MR | Zbl

[15] Adler V. E., “Discretizations of the Landau–Lifshitz equation”, Theor. Math. Phys., 124:1 (2000), 897–908 | DOI | MR | Zbl

[16] Hirota R., “Nonlinear partial difference equations. II. Discrete-time Toda equation”, J. Phys. Soc. Japan, 43 (1977), 2074–2078 | DOI | MR

[17] Suris Yu. B., “Bi-Hamiltonian structure of the $qd$ algorithm and new discretizations of the Toda lattice”, Phys. Lett. A, 206 (1995), 153–161 | DOI | MR | Zbl

[18] Adler V. E., “On the structure of the Bäcklund transformations for the relativistic lattices”, J. Nonlinear Math. Phys., 7 (2000), 34–56 ; nlin.SI/0001072 | DOI | MR | Zbl

[19] Adler V. E., Suris Yu. B., “$Q_4$: Integrable master equation related to an elliptic curve”, Internat. Math. Res. Not., 47 (2004), 2523–2553 ; nlin.SI/0309030 | DOI | MR | Zbl

[20] Zhiber A. V., Ibragimov N. H., Shabat A. B., “Liouville type equations”, DAN SSSR, 249 (1979), 26–29 | MR | Zbl

[21] Sokolov V. V., Zhiber A. V., “On the Darboux integrable hyperbolic equations”, Phys. Lett. A, 208 (1995), 303–308 | DOI | MR | Zbl

[22] Zhiber A. V., Sokolov V. V., “Exactly solvable hyperbolic equations of the Liouville type”, Uspekhi Mat. Nauk, 56:1(337) (2001), 63–106 | MR | Zbl

[23] Yamilov R. I., “On classification of discrete evolution equations”, Uspekhi Mat. Nauk, 38:6 (1983), 155–156

[24] Adler V. E., Shabat A. B., “Dressing chain for the acoustic spectral problem”, Theor. Math. Phys., 149:1 (2006), 1324–1337 ; nlin.SI/0604008 | DOI | MR | Zbl

[25] Nijhoff F., Hone A., Joshi N., “On a Schwarzian PDE associated with the KdV hierarchy”, Phys. Lett. A, 267 (2000), 147–156 ; solv-int/9909026 | DOI | MR | Zbl

[26] Svinolupov S. I., Yamilov R.I.,, “The multi-field Schrödinger lattices”, Phys. Lett. A, 160 (1991), 548–552 | DOI | MR

[27] Merola I., Ragnisco O., Tu G.-Z., “A novel hierarchy of integrable lattices”, Inverse Problems, 10 (1994), 1315–1334 ; solv-int/9401005 | DOI | MR | Zbl