$q$-Analogue of the Centralizer Construction and Skew Representations of the Quantum Affine Algebra
Symmetry, integrability and geometry: methods and applications, Tome 2 (2006) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We prove an analogue of the Sylvester theorem for the generator matrices of the quantum affine algebra $\mathrm U_q(\widehat{\mathfrak{gl}}_n)$. We then use it to give an explicit realization of the skew representations of the quantum affine algebra. This allows one to identify them in a simple way by calculating their highest weight, Drinfeld polynomials and the Gelfand–Tsetlin character or ($q$-character). We also apply the quantum Sylvester theorem to construct a $q$-analogue of the Olshanski algebra as a projective limit of certain centralizers in $\mathrm U_q(\mathfrak{gl}_n)$ and show that this limit algebra contains the $q$-Yangian as a subalgebra.
Keywords: quantum affine algebra; quantum Sylvester theorem; skew representations.
@article{SIGMA_2006_2_a91,
     author = {Mark J. Hopkins and Alexander I. Molev},
     title = {A~$q${-Analogue} of the {Centralizer} {Construction} and {Skew} {Representations} of the {Quantum} {Affine} {Algebra}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2006},
     volume = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a91/}
}
TY  - JOUR
AU  - Mark J. Hopkins
AU  - Alexander I. Molev
TI  - A $q$-Analogue of the Centralizer Construction and Skew Representations of the Quantum Affine Algebra
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2006
VL  - 2
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a91/
LA  - en
ID  - SIGMA_2006_2_a91
ER  - 
%0 Journal Article
%A Mark J. Hopkins
%A Alexander I. Molev
%T A $q$-Analogue of the Centralizer Construction and Skew Representations of the Quantum Affine Algebra
%J Symmetry, integrability and geometry: methods and applications
%D 2006
%V 2
%U http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a91/
%G en
%F SIGMA_2006_2_a91
Mark J. Hopkins; Alexander I. Molev. A $q$-Analogue of the Centralizer Construction and Skew Representations of the Quantum Affine Algebra. Symmetry, integrability and geometry: methods and applications, Tome 2 (2006). http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a91/

[1] Bazhanov V. V., Reshetikhin N., “Restricted solid-on-solid models connected with simply laced algebras and conformal field theory”, J. Phys. A: Math. Gen., 23 (1990), 1477–1492 | DOI | MR | Zbl

[2] Brundan J., Kleshchev A., “Parabolic presentations of the Yangian $Y(gl_n)$”, Comm. Math. Phys., 254 (2005), 191–220 ; math.QA/0407011 | DOI | MR | Zbl

[3] Brundan J., Kleshchev A., Representations of shifted Yangians and finite $W$-algebras, math.RT/0508003 | MR

[4] Chari V., Pressley A., A guide to quantum groups, Cambridge University Press, 1994 | MR | Zbl

[5] Cherednik I. V., “A new interpretation of Gelfand–Tzetlin bases”, Duke Math. J., 54 (1987), 563–577 | DOI | MR | Zbl

[6] Ding J., Frenkel I., “Isomorphism of two realizations of quantum affine algebra $U_q(gl(n))$”, Comm. Math. Phys., 156 (1993), 277–300 | DOI | MR | Zbl

[7] Drinfeld V. G., “Hopf algebras and the quantum Yang–Baxter equation”, Soviet Math. Dokl., 32 (1985), 254–258 | MR

[8] Frenkel E., Mukhin E., “The Hopf algebra $U_q(gl)_\infty$”, Selecta Math., 8 (2002), 537–635 ; math.QA/0103126 | MR | Zbl

[9] Frenkel E., Reshetikhin N., “The $q$-characters of representations of quantum affine algebras and deformations of $W$-algebras”, Contemp. Math., 248 (1999), 163–205 ; math.QA/9810055 | MR | Zbl

[10] Gelfand I. M., Retakh V. S., “Determinants of matrices over noncommutative rings”, Funct. Anal. Appl., 25 (1991), 91–102 | DOI | MR

[11] Jimbo M., “A $q$-analogue of $U_q(gl(N+1))$, Hecke algebra and the Yang–Baxter equation”, Lett. Math. Phys., 11 (1986), 247–252 | DOI | MR | Zbl

[12] Jimbo M., “Quantum $R$-matrix for the generalized Toda system”, Comm. Math. Phys., 102 (1986), 537–547 | DOI | MR | Zbl

[13] Klimyk A., Schmüdgen K., Quantum groups and their representations, Springer, Berlin, 1997 | MR

[14] Knight H., “Spectra of tensor products of finite-dimensional representations of Yangians”, J. Algebra, 174 (1995), 187–196 | DOI | MR | Zbl

[15] Krob D., Leclerc B., “Minor identities for quasi-determinants and quantum determinants”, Comm. Math. Phys., 169 (1995), 1–23 ; hep-th/9411194 | DOI | MR | Zbl

[16] Kuznetsov V. B., Koornwinder T. H., “Gauss hypergeometric function and quadratic $R$-matrix algebras”, St. Petersburg Math. J., 6 (1995), 595–618, arXiv: hep-th/9311152 | MR

[17] Kuznetsov V. B., “${}_3F_2(1)$ hypergeometric function and quadratic $R$-matrix algebra”, Symmetries and Integrability of Difference Equations (Estérel, PQ, 1994), CRM Proc. Lecture Notes, 9, Amer. Math. Soc., Providence, RI, 1996, 185–197 ; math.QA/9411225 | MR | Zbl

[18] Macdonald I. G., Symmetric functions and Hall polynomials, Oxford University Press, Oxford, 1995 | MR | Zbl

[19] Molev A. I., “Yangians and transvector algebras”, Discrete Math., 246 (2002), 231–253 ; math.QA/9811115 | DOI | MR | Zbl

[20] Molev A., Nazarov M., Olshanski G., “Yangians and classical Lie algebras”, Russian Math. Surveys, 51:2 (1996), 205–282 ; hep-th/9409025 | DOI | MR | Zbl

[21] Molev A., Olshanski G., “Centralizer construction for twisted Yangians”, Selecta Math., 6 (2000), 269–317 ; q-alg/9712050 | DOI | MR | Zbl

[22] Molev A., Ragoucy E., Sorba P., “Coideal subalgebras in quantum affine algebras”, Rev. Math. Phys., 15 (2003), 789–822 ; math.QA/0208140 | DOI | MR | Zbl

[23] Nakai W., Nakanishi T., Paths, tableaux and $q$-characters of quantum affine algebras: the $C_n$ case, math.QA/0502041

[24] Nazarov M., “Yangian of the queer Lie superalgebra”, Comm. Math. Phys., 208 (1999), 195–223 ; math.QA/9902146 | DOI | MR | Zbl

[25] Nazarov M., Tarasov V., “Yangians and Gelfand–Zetlin bases”, Publ. Res. Inst. Math. Sci. Kyoto Univ., 30 (1994), 459–478 ; hep-th/9302102 | DOI | MR | Zbl

[26] Nazarov M., Tarasov V., “Representations of Yangians with Gelfand–Zetlin bases”, J. Reine Angew. Math., 496 (1998), 181–212 ; q-alg/9502008 | MR | Zbl

[27] Olshanski G. I., “Extension of the algebra $U(g)$ for infinite-dimensional classical Lie algebras $g$, and the Yangians $Y(gl(m))$”, Soviet Math. Dokl., 36 (1988), 569–573 | MR

[28] Olshanski G. I., “Representations of infinite-dimensional classical groups, limits of enveloping algebras, and Yangians”, Topics in Representation Theory, Advances in Soviet Math., 2, ed. A. A. Kirillov, Amer. Math. Soc., Providence, RI, 1991, 1–66 | MR

[29] Olshanski G. I., “Twisted Yangians and infinite-dimensional classical Lie algebras”, Quantum Groups, Lecture Notes in Math., 1510, ed. P. P. Kulish, Springer, Berlin–Heidelberg, 1992, 103–120 | MR

[30] Reshetikhin N. Yu., Takhtajan L. A., Faddeev L. D., “Quantization of Lie groups and Lie algebras”, Leningrad Math. J., 1 (1990), 193–225 | MR | Zbl