Dynamical $R$ Matrices of Elliptic Quantum Groups and Connection Matrices for the $q$-KZ Equations
Symmetry, integrability and geometry: methods and applications, Tome 2 (2006) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For any affine Lie algebra $\mathfrak g$, we show that any finite dimensional representation of the universal dynamical $R$ matrix $\mathcal R(\lambda)$ of the elliptic quantum group $\mathcal B_{q,\lambda}(\mathfrak g)$ coincides with a corresponding connection matrix for the solutions of the $q$-KZ equation associated with $U_q(\mathfrak g)$. This provides a general connection between $\mathcal B_{q,\lambda}(\mathfrak g)$ and the elliptic face (IRF or SOS) models. In particular, we construct vector representations of $\mathcal R(\lambda)$ for $\mathfrak g=A_n^{(1)}$, $B_n^{(1)}$, $C_n^{(1)}$, $D_n^{(1)}$, and show that they coincide with the face weights derived by Jimbo, Miwa and Okado. We hence confirm the conjecture by Frenkel and Reshetikhin.
Keywords: elliptic quantum group; quasi-Hopf algebra.
@article{SIGMA_2006_2_a90,
     author = {Hitoshi Konno},
     title = {Dynamical $R${~Matrices} of {Elliptic} {Quantum} {Groups} and {Connection} {Matrices} for the $q${-KZ} {Equations}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2006},
     volume = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a90/}
}
TY  - JOUR
AU  - Hitoshi Konno
TI  - Dynamical $R$ Matrices of Elliptic Quantum Groups and Connection Matrices for the $q$-KZ Equations
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2006
VL  - 2
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a90/
LA  - en
ID  - SIGMA_2006_2_a90
ER  - 
%0 Journal Article
%A Hitoshi Konno
%T Dynamical $R$ Matrices of Elliptic Quantum Groups and Connection Matrices for the $q$-KZ Equations
%J Symmetry, integrability and geometry: methods and applications
%D 2006
%V 2
%U http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a90/
%G en
%F SIGMA_2006_2_a90
Hitoshi Konno. Dynamical $R$ Matrices of Elliptic Quantum Groups and Connection Matrices for the $q$-KZ Equations. Symmetry, integrability and geometry: methods and applications, Tome 2 (2006). http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a90/

[1] Jimbo M., “A $q$-difference analogue of $U(g)$ and the Yang–Baxter equation”, Lett. Math. Phys., 10 (1985), 63–69 | DOI | MR | Zbl

[2] Jimbo M., “Quantum $R$ matrix for the generalized Toda system”, Comm. Math. Phys., 102 (1986), 537–547 | DOI | MR | Zbl

[3] Jimbo M., Miwa T., Algebraic analysis of solvable lattice models, CBMS Regional Conference Series in Mathematics, 85, Amer. Math. Soc., 1995 | MR | Zbl

[4] Konno H., “An elliptic algebra $U_{q,p}(sl_2)$ and the fusion RSOS models”, Comm. Math. Phys., 195 (1998), 373–403 ; q-alg/9709013 | DOI | MR | Zbl

[5] Jimbo M., Konno H., Odake S., Shiraishi J., “Elliptic algebra $U_{q,p}(sl_2)$: Drinfel'd currents and vertex operators”, Comm. Math. Phys., 199 (1999), 605–647 ; math.QA/9802002 | DOI | MR | Zbl

[6] Kojima T., Konno H., “The elliptic algebra $U_{q,p}(sl_N)$ and the Drinfel'd realization of the elliptic quantum group $B_{q,l}(sl_N)$”, Comm. Math. Phys., 239 (2003), 405–447 ; math.QA/0210383 | DOI | MR | Zbl

[7] Kojima T., Konno H., “The Drinfel'd realization of the elliptic quantum group $B_{q,l}(A_2^{(2)})$”, J. Math. Phys., 45 (2004), 3146–3179 ; math.QA/0401055 | DOI | MR | Zbl

[8] Kojima T., Konno H., Weston R., “The vertex-face correspondence and correlation functions of the fusion eight-vertex models. I. The general formalism”, Nuclear Phys. B, 720 (2005), 348–398 ; math.QA/0504433 | DOI | MR | Zbl

[9] Baxter R. J., “Partition function of the eight-vertex lattice model”, Ann. Phys., 70 (1972), 193–228 | DOI | MR | Zbl

[10] Belavin A., “Dynamical symmetry of integrable quantum systems”, Nuclear Phys. B, 180 (1981), 189–200 | DOI | MR | Zbl

[11] Andrews G. E., Baxter R. J., Forrester P. J., “Eight-vertex SOS model and generalized Rogers–Ramanujan-type identities”, J. Stat. Phys., 35 (1984), 193–266 | DOI | MR | Zbl

[12] Jimbo M., Miwa T., Okado M., “Solvable lattice models whose states are dominant integral weights of $A^{(1)}_{n-1}$”, Lett. Math. Phys., 14 (1987), 123–131 | DOI | MR | Zbl

[13] Jimbo M., Miwa T., Okado M., “Solvable lattice models related to the vector representation of classical simple Lie algebras”, Comm. Math. Phys., 116 (1988), 507–525 | DOI | MR | Zbl

[14] Kuniba A., “Exact solution of solid-on-solid models for twisted affine Lie algebras $A^{(2)}_{2n}$ and $A^{(2)}_{2n-1}$”, Nuclear Phys. B, 355 (1991), 801–821 | DOI | MR

[15] Kuniba A., Suzuki J., “Exactly solvable $G^{(1)}_2$ solid-on-solid models”, Phys. Lett. A, 160 (1991), 216–222 | DOI | MR

[16] Frenkel I. B., Reshetikhin N. Yu., “Quantum affine algebras and holonomic difference equations”, Comm. Math. Phys., 146 (1992), 1–60 | DOI | MR | Zbl

[17] Date E., Jimbo M., Okado M., “Crystal base and $q$-vertex operators”, Comm. Math. Phys., 155 (1993), 47–69 | DOI | MR | Zbl

[18] Sklyanin E. K., “Some algebraic structures connected with the Yang–Baxter equation”, Funct. Anal. Appl., 16 (1982), 27–34 | MR | Zbl

[19] Foda O., Iohara K., Jimbo M., Kedem R., Miwa T., Yan H., “An elliptic quantum algebra for $\widehat{\mathrm{sl}}_2$”, Lett. Math. Phys., 32 (1994), 259–268 ; hep-th/9403094 | DOI | MR | Zbl

[20] Felder G., “Elliptic quantum groups”, Proceedings XIth International Congress of Mathematical Physics (1994, Paris), Int. Press, Cambridge, 1995, 211–218 ; hep-th/9412207 | MR | Zbl

[21] Frønsdal C., “Quasi-Hopf deformations of quantum groups”, Lett. Math. Phys., 40 (1997), 117–134 ; q-alg/9611028 | DOI | MR

[22] Enriquez B., Felder G., “Elliptic quantum groups $E_{\tau,\eta}(sl)$ and quasi-Hopf algebras”, Comm. Math. Phys., 195 (1998), 651–689 ; q-alg/9703018 | DOI | MR | Zbl

[23] Jimbo M., Konno H., Odake S., Shiraishi J., “Quasi-Hopf twistors for elliptic quantum groups”, Transformation Groups, 4 (1999), 303–327 ; q-alg/9712029 | DOI | MR | Zbl

[24] Drinfel'd V. G., “Quasi-Hopf algebras”, Leningrad Math. J., 1 (1990), 1419–1457 | MR

[25] Babelon O., Bernard D., Billey E., “A quasi-Hopf algebra interpretation of quantum $3j$- and $6j$-symbols and difference equations”, Phys. Lett. B, 375 (1996), 89–97 ; q-alg/9511019 | DOI | MR | Zbl

[26] Felder G., Varchenko A., “On representations of the elliptic quantum groups $E_{\tau,\eta}(sl)$”, Comm. Math. Phys., 181 (1996), 741–761 ; q-alg/9601003 | DOI | MR | Zbl

[27] Etingof P., Varchenko A., “Solutions of the quantum dynamical Yang–Baxter equation and dynamical quantum groups”, Comm. Math. Phys., 196 (1998), 591–640 ; q-alg/9708015 | DOI | MR | Zbl

[28] Etingof P., Varchenko A., “Exchange dynamical quantum groups”, Comm. Math. Phys., 205 (1999), 19–52 ; math.QA/9801135 | DOI | MR | Zbl

[29] Koelink E., van Norden Y., Rosengren H., “Elliptic $U(2)$ quantum group and elliptic hypergeometric series”, Comm. Math. Phys., 245 (2004), 519–537 ; math.QA/0304189 | DOI | MR | Zbl

[30] Kac V. G., Infinite dimensional Lie algebras, 3rd ed., Cambridge University Press, 1990 | MR

[31] Tanisaki T., “Killing forms, Harish–Chandra isomorphysims, and universal $R$ matrices for quantum algebras”, Internat. J. Modern Phys. A, 7 (1991), 941–961 | DOI | MR

[32] Arnaudon D., Buffenoir E., Ragoucy E., Roche P., “Universal solutions of quantum dynamical Yang–Baxter equations”, Lett. Math. Phys., 44 (1998), 201–214 ; q-alg/9712037 | DOI | MR | Zbl

[33] Idzumi M., Iohara K., Jimbo M., Miwa T., Nakashima T., Tokihiro T., “Quantum affine symmetry in vertex models”, Internat. J. Modern Phys. A, 8 (1993), 1479–1511 ; hep-th/9208066 | DOI | MR

[34] Bourbaki N., Groupes et Algebres de Lie, Chaps. 4–6, Hermann, Paris, 1968 | MR

[35] Date E., Okado M., “Calculation of excited spectra of the spin model related with the vector representation of the quantized affine algebra of type $A_n^{(1)}$”, Internat. J. Modern Phys. A, 9 (1994), 399–417 | DOI | MR

[36] Davies B., Okado M., “Excitation spectra of spin models constructed from quantized affine algebras of types $B_n^{(1)}$ and $D_n^{(1)}$”, Internat. J. Modern Phys. A, 11 (1996), 1975–2018 ; hep-th/9506201 | DOI | MR

[37] Jing N., Misra K. C., Okado M., “$q$-wedge modules for quantized enveloping algebras of classical type”, J. Algebra, 230 (2000), 518–539 ; math.QA/9811013 | DOI | MR | Zbl

[38] Drinfel'd V. G., “On almost co-commutative Hopf algebras”, Leningrad Math. J., 1 (1990), 231–431