Einstein–Riemann Gravity on Deformed Spaces
Symmetry, integrability and geometry: methods and applications, Tome 2 (2006) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A differential calculus, differential geometry and the E-R Gravity theory are studied on noncommutative spaces. Noncommutativity is formulated in the star product formalism. The basis for the gravity theory is the infinitesimal algebra of diffeomorphisms. Considering the corresponding Hopf algebra we find that the deformed gravity is based on a deformation of the Hopf algebra.
Keywords: noncommutative spaces; deformed gravity.
@article{SIGMA_2006_2_a88,
     author = {Julius Wess},
     title = {Einstein{\textendash}Riemann {Gravity} on {Deformed} {Spaces}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2006},
     volume = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a88/}
}
TY  - JOUR
AU  - Julius Wess
TI  - Einstein–Riemann Gravity on Deformed Spaces
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2006
VL  - 2
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a88/
LA  - en
ID  - SIGMA_2006_2_a88
ER  - 
%0 Journal Article
%A Julius Wess
%T Einstein–Riemann Gravity on Deformed Spaces
%J Symmetry, integrability and geometry: methods and applications
%D 2006
%V 2
%U http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a88/
%G en
%F SIGMA_2006_2_a88
Julius Wess. Einstein–Riemann Gravity on Deformed Spaces. Symmetry, integrability and geometry: methods and applications, Tome 2 (2006). http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a88/

[1] Aschieri P., Blohmann C., Dimitrijević M., Meyer F., Schupp P., Wess J., “A gravity theory on noncommutative spaces”, Classical Quantum Gravity, 22 (2005), 3511–3522 ; hep-th/0504183 | DOI | MR

[2] Aschieri P., Dimitrijević M., Meyer F., Wess J., “Noncommutative geometry and gravity”, Classical Quantum Gravity, 23 (2006), 1883–1912 ; hep-th/0510059 | DOI | MR

[3] Bayen F., Flato M., Fronsdal C., Lichnerowicz A., Sternheimer D., “Deformation theory and quantization. I. Deformations of symplectic structures”, Ann. Physics, 111 (1978), 61–110 | DOI | MR | Zbl

[4] Sternheimer D., “Deformation quantization: twenty years after”, AIP Conf. Proc, 453, 1998, 107–145 ; math.QA/9809056 | MR | Zbl

[5] Kontsevich M., “Deformation quantization of Poisson manifolds”, Lett. Math. Phys., 66 (2003), 157–216 ; q-alg/9709040 | DOI | MR | Zbl

[6] Waldman S., An introduction to deformation quantization, Lecture Notes, 2002; see . http://idefix.physik.uni-freiburg.de/~stefan/Skripte/intro/index.html

[7] Weyl H., “Quantenmechanik und Gruppentheorie”, Zeit. für Phys., 46 (1927), 1–46 | DOI | Zbl

[8] Moyal J. E., “Quantum mechanics as a statistical theory”, Proc. Cambridge Phil. Soc., 45 (1949), 99–124 | DOI | MR | Zbl

[9] Wess J., Zumino B., “Covariant differential calculus on the quantum hyperplane”, Nuclear Phys. B Proc. Suppl., 18 (1991), 302–312 | DOI | MR

[10] Woronowic S. L., “Differential calculus on compact matrix pseudogroups (quantum groups)”, Comm. Math. Phys., 122 (1989), 125–170 | DOI | MR | Zbl

[11] Wess J., “Deformed coordinate spaces; derivatives”, Proceedings of the BW2003 Workshop on Mathematical, Theoretical and Phenomenological Challenges Beyond the Standard Model: Perspectives of Balkans Collaboration (2003, Vrnjačka Banja, Serbia), Vrnjačka Banja, 2003, 122–128; hep-th/0408080

[12] Wess J., Differential calculus and gauge transformations on a deformed space, hep-th/0607251 | MR

[13] Wess J., Deformed gauge theories, hep-th/0608135

[14] Aschieri P., Dimitrijević M., Meyer F., Schraml S., Wess J., “Twisted gauge theories”, Lett. Math. Phys., 78 (2006), 61–71 ; hep-th/0603024 | DOI | MR | Zbl

[15] Vassilevich D. V., “Twist to close”, Modern Phys. Lett. A, 21 (2006), 1279–1284 ; hep-th/0602185 | DOI | MR

[16] Drinfel'd V. G., “On constant quasiclassical solutions of the Yang–Baxter equations”, Soviet Math. Dokl., 28 (1983), 667–671

[17] Reshetikhin N., “Multiparameter quantum groups and twisted quasitriangular Hopf algebras”, Lett. Math. Phys., 20 (1990), 331–335 | DOI | MR | Zbl

[18] Gerstenhaber M., Giaquinto A., Schack S.D., “Quantum symmetry”, Quantum Groups, Lecture Notes in Math., 1510, ed. P. P. Kulish, Springer-Verlag, Berlin, 1992, 9–46 | MR

[19] Kulish P. P., Lyakhovsky V. D., del Olmo M. A., “Chains of twists for classical Lie algebras”, J. Phys. A: Math. Phys., 32 (1999), 8671–8684 ; math.QA/9908061 | DOI | MR | Zbl