@article{SIGMA_2006_2_a88,
author = {Julius Wess},
title = {Einstein{\textendash}Riemann {Gravity} on {Deformed} {Spaces}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2006},
volume = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a88/}
}
Julius Wess. Einstein–Riemann Gravity on Deformed Spaces. Symmetry, integrability and geometry: methods and applications, Tome 2 (2006). http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a88/
[1] Aschieri P., Blohmann C., Dimitrijević M., Meyer F., Schupp P., Wess J., “A gravity theory on noncommutative spaces”, Classical Quantum Gravity, 22 (2005), 3511–3522 ; hep-th/0504183 | DOI | MR
[2] Aschieri P., Dimitrijević M., Meyer F., Wess J., “Noncommutative geometry and gravity”, Classical Quantum Gravity, 23 (2006), 1883–1912 ; hep-th/0510059 | DOI | MR
[3] Bayen F., Flato M., Fronsdal C., Lichnerowicz A., Sternheimer D., “Deformation theory and quantization. I. Deformations of symplectic structures”, Ann. Physics, 111 (1978), 61–110 | DOI | MR | Zbl
[4] Sternheimer D., “Deformation quantization: twenty years after”, AIP Conf. Proc, 453, 1998, 107–145 ; math.QA/9809056 | MR | Zbl
[5] Kontsevich M., “Deformation quantization of Poisson manifolds”, Lett. Math. Phys., 66 (2003), 157–216 ; q-alg/9709040 | DOI | MR | Zbl
[6] Waldman S., An introduction to deformation quantization, Lecture Notes, 2002; see . http://idefix.physik.uni-freiburg.de/~stefan/Skripte/intro/index.html
[7] Weyl H., “Quantenmechanik und Gruppentheorie”, Zeit. für Phys., 46 (1927), 1–46 | DOI | Zbl
[8] Moyal J. E., “Quantum mechanics as a statistical theory”, Proc. Cambridge Phil. Soc., 45 (1949), 99–124 | DOI | MR | Zbl
[9] Wess J., Zumino B., “Covariant differential calculus on the quantum hyperplane”, Nuclear Phys. B Proc. Suppl., 18 (1991), 302–312 | DOI | MR
[10] Woronowic S. L., “Differential calculus on compact matrix pseudogroups (quantum groups)”, Comm. Math. Phys., 122 (1989), 125–170 | DOI | MR | Zbl
[11] Wess J., “Deformed coordinate spaces; derivatives”, Proceedings of the BW2003 Workshop on Mathematical, Theoretical and Phenomenological Challenges Beyond the Standard Model: Perspectives of Balkans Collaboration (2003, Vrnjačka Banja, Serbia), Vrnjačka Banja, 2003, 122–128; hep-th/0408080
[12] Wess J., Differential calculus and gauge transformations on a deformed space, hep-th/0607251 | MR
[13] Wess J., Deformed gauge theories, hep-th/0608135
[14] Aschieri P., Dimitrijević M., Meyer F., Schraml S., Wess J., “Twisted gauge theories”, Lett. Math. Phys., 78 (2006), 61–71 ; hep-th/0603024 | DOI | MR | Zbl
[15] Vassilevich D. V., “Twist to close”, Modern Phys. Lett. A, 21 (2006), 1279–1284 ; hep-th/0602185 | DOI | MR
[16] Drinfel'd V. G., “On constant quasiclassical solutions of the Yang–Baxter equations”, Soviet Math. Dokl., 28 (1983), 667–671
[17] Reshetikhin N., “Multiparameter quantum groups and twisted quasitriangular Hopf algebras”, Lett. Math. Phys., 20 (1990), 331–335 | DOI | MR | Zbl
[18] Gerstenhaber M., Giaquinto A., Schack S.D., “Quantum symmetry”, Quantum Groups, Lecture Notes in Math., 1510, ed. P. P. Kulish, Springer-Verlag, Berlin, 1992, 9–46 | MR
[19] Kulish P. P., Lyakhovsky V. D., del Olmo M. A., “Chains of twists for classical Lie algebras”, J. Phys. A: Math. Phys., 32 (1999), 8671–8684 ; math.QA/9908061 | DOI | MR | Zbl