@article{SIGMA_2006_2_a87,
author = {Francesco Calogero and Matteo Sommacal},
title = {Solvable {Nonlinear} {Evolution} {PDEs} in {Multidimensional} {Space}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2006},
volume = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a87/}
}
Francesco Calogero; Matteo Sommacal. Solvable Nonlinear Evolution PDEs in Multidimensional Space. Symmetry, integrability and geometry: methods and applications, Tome 2 (2006). http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a87/
[1] Calogero F., “Motion of poles and zeros of special solutions of nonlinear and linear partial differential equations, and related “solvable” many body problems”, Nuovo Cimento B, 43 (1978), 177–241 | DOI | MR
[2] Calogero F., “A class of $C$-integrable PDEs in multidimensions”, Inverse Problems, 10 (1994), 1231–1234 | DOI | MR | Zbl
[3] Calogero F., Classical many-body problems amenable to exact treatments, Lecture Notes in Physics Monograph, 66, Springer-Verlag, Berlin–Heidelberg, 2001 | MR | Zbl
[4] Calogero F., Isochronous systems, Oxford University Press, Oxford, 2008, 250 pp. | MR | Zbl
[5] Erdélyi A. (ed.), Higher transcendental functions, Vol. II, McGraw-Hill, New York, 1953
[6] Gómez-Ullate D., Sommacal M., “Periods of the goldfish many-body problem”, J. Nonlinear Math. Phys., 12, suppl. 1 (2005), 351–362 | DOI | MR
[7] Mariani M., Calogero F., “Isochronous PDEs”, Theor. Math. Phys., 68 (2005), 958–968 | MR