Para-Grassmann Variables and Coherent States
Symmetry, integrability and geometry: methods and applications, Tome 2 (2006) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The definitions of para-Grassmann variables and $q$-oscillator algebras are recalled. Some new properties are given. We then introduce appropriate coherent states as well as their dual states. This allows us to obtain a formula for the trace of a operator expressed as a function of the creation and annihilation operators.
Keywords: para-Grassmann variables; $q$-oscillator algebra; coherent states.
@article{SIGMA_2006_2_a86,
     author = {Daniel C. Cabra and Enrique F. Moreno and A. Tanas\u{a}},
     title = {Para-Grassmann {Variables} and {Coherent} {States}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2006},
     volume = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a86/}
}
TY  - JOUR
AU  - Daniel C. Cabra
AU  - Enrique F. Moreno
AU  - A. Tanasă
TI  - Para-Grassmann Variables and Coherent States
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2006
VL  - 2
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a86/
LA  - en
ID  - SIGMA_2006_2_a86
ER  - 
%0 Journal Article
%A Daniel C. Cabra
%A Enrique F. Moreno
%A A. Tanasă
%T Para-Grassmann Variables and Coherent States
%J Symmetry, integrability and geometry: methods and applications
%D 2006
%V 2
%U http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a86/
%G en
%F SIGMA_2006_2_a86
Daniel C. Cabra; Enrique F. Moreno; A. Tanasă. Para-Grassmann Variables and Coherent States. Symmetry, integrability and geometry: methods and applications, Tome 2 (2006). http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a86/

[1] Ohnuki Y., Kamefuchi S., Quantum field theory and parastatistics, Springer-Verlag, New York, 1982 | MR | Zbl

[2] Polychronakos A. P., “A classical realization of quantum algebras”, Modern Phys. Lett. A, 5 (1990), 2325–2334 | DOI | MR

[3] Baulieu L., Floratos E. G., “Path integral on the quantum plane”, Phys. Lett. B, 258 (1991), 171–178 | DOI | MR

[4] Filippov A. T., Isaev A. P., Kurdikov A. B., “Paragrassmann analysis and quantum groups”, Modern Phys. Lett. A, 7 (1992), 2129–2141 ; gr-qc/9204089 | DOI | MR | Zbl

[5] Filippov A. T., Isaev A.P., Kurdikov A.B., “Paragrassmann differential calculus”, Theor. Math. Phys., 94 (1993), 150–165 ; hep-th/9210075 | DOI | MR | Zbl

[6] Chaichian M., Demichev A. P., “$q$-deformed path integral”, Phys. Lett. B, 320:3–4 (1994), 273–280 ; hep-th/9310001 | MR

[7] Isaev A. P., “Paragrassmann integral, discrete systems and quantum groups”, Internat. J. Modern Phys. A, 12 (1997), 201–206 ; q-alg/9609030 | DOI | MR | Zbl

[8] Chaichian M., Demichev A. P., Path integrals with generalized Grassmann variables, q-alg/9504016 | MR

[9] Ilinski K. N., Kalinin G. V., Stepanenko A. S., “$q$-functional field theory for particles with exotic statistics”, Phys. Lett. A, 232 (1997), 399–408 ; hep-th/9705086 | DOI | MR | Zbl

[10] Ilinski K. N., Kalinin G. V., Stepanenko A. S., “$q$-functional Wick's theorems for particles with exotic statistics”, J. Phys. A: Math. Gen., 30 (1997), 5299–5310 ; hep-th/9704181 | DOI | MR | Zbl

[11] Rausch de Traubenberg M., Clifford algebras, supersymmetry and $Z(n)$ symmetries: applications in field theory, (in French) hep-th/9802141

[12] Daoud M., Hassouni Y., Kibler M., “Generalized supercoherent states”, Phys. Atomic Nuclei, 61 (1998), 1821–1864 ; quant-ph/9804046 | MR

[13] Daoud M., Kibler M., A fractional supersymmetric oscillator and its coherent states, math-ph/9912024

[14] Cugliandolo L. F., Lozano G. S., Moreno E. F., Schaposnik F. A., “A note on Gaussian integrals over paragrassmann variables”, Internat. J. Modern Phys. A, 19 (2004), 1705–1714 ; hep-th/0209172 | DOI | MR | Zbl

[15] Biedenharn L. C., “The quatum group SU(2)-$q$ and a $q$ analog of the boson operators”, J. Phys. A: Math. Gen., 22 (1989), 873–878 | DOI | MR

[16] Macfarlane A. J., “On $q$ analogs of the quantum harmonic oscillator and the quatum group SU(2)-$q$”, J. Phys. A: Math. Gen., 22 (1989), 4581–4588 | DOI | MR | Zbl

[17] Karabali D., Nair V. P., “Many body states and operator algebra for exclusion statistics”, Nuclear Phys. B, 438 (1995), 551–560 | DOI | MR | Zbl

[18] Negele J. W., Orland H., Quantum many-particle systems, Perseus, Cambridge, 1988 | MR

[19] Cabra D., Moreno E., Tanasă A., Para-Grassmann variables and coherent states for multi-particle states, in progress

[20] Rausch de Traubenberg M., Fleury N., “Beyond spinors”, Leite Lopes Festschrift, eds. N. Fleury et al., World Scientific, Singapore, 1988, 79–101 | MR

[21] Hayashi T., “$Q$-analogues of Clifford and Weyl algebras – spinor and oscillator reoresentations of quantum enveloping algebras”, Comm. Math. Phys., 127 (1990), 129–144 | DOI | MR

[22] Chaichian M., Kulish P., “Quantum Lie superalgebras and $q$ oscillators”, Phys. Lett. B, 234 (1990), 72–80 | DOI | MR | Zbl

[23] Fivel D., “Interpolation between Fermi and Bose statistics using generalized commutators”, Phys. Rev. Lett., 65 (1990), 3361–3364 | DOI | MR

[24] Greenberg O. W., “Quon statistics”, Phys. Rev. D, 43 (1991), 4111–4120 | DOI | MR

[25] Klauder J. R., Skagerstam B., Coherent states: applications in physics and mathematical physics, World Scientific, 1985 | MR | Zbl