Quantum Gravity as a Broken Symmetry Phase of a BF Theory
Symmetry, integrability and geometry: methods and applications, Tome 2 (2006) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We explain how General Relativity with a cosmological constant arises as a broken symmetry phase of a BF theory. In particular we show how to treat de Sitter and anti-de Sitter cases simultaneously. This is then used to formulate a quantisation of General Relativity through a spin foam perturbation theory. We then briefly discuss how to calculate the effective action in this quantization procedure.
Keywords: de Sitter; anti-de Sitter; spin foams.
@article{SIGMA_2006_2_a85,
     author = {Aleksandar Mikovi\'c},
     title = {Quantum {Gravity} as a {Broken} {Symmetry} {Phase} of {a~BF} {Theory}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2006},
     volume = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a85/}
}
TY  - JOUR
AU  - Aleksandar Miković
TI  - Quantum Gravity as a Broken Symmetry Phase of a BF Theory
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2006
VL  - 2
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a85/
LA  - en
ID  - SIGMA_2006_2_a85
ER  - 
%0 Journal Article
%A Aleksandar Miković
%T Quantum Gravity as a Broken Symmetry Phase of a BF Theory
%J Symmetry, integrability and geometry: methods and applications
%D 2006
%V 2
%U http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a85/
%G en
%F SIGMA_2006_2_a85
Aleksandar Miković. Quantum Gravity as a Broken Symmetry Phase of a BF Theory. Symmetry, integrability and geometry: methods and applications, Tome 2 (2006). http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a85/

[1] Green M. B., Schwarz J. H., Witten E., Superstring theory, Vols. 1, 2, Cambridge University Press, 1987 | MR

[2] Rovelli C., “Loop quantum gravity”, Living Rev. Relativ., 1 (1998), 1998–1, 68 pp., ages ; gr-qc/9710008 | MR | Zbl

[3] Baez J. C., “An introduction to spin foam models of $BF$ theory and quantum gravity”, Geometry and Quantum Physics (1999, Schladming), Lecture Notes in Phys., 543, Springer, Berlin, 2000, 25–93 ; gr-qc/9905087 | MR

[4] Crane L., Kauffman L. H., Yetter D., “State-sum invariants of 4-manifolds”, J. Knot Theory Ramifications, 6 (1997), 177–234 ; hep-th/9409167 | DOI | MR | Zbl

[5] Barrett J. W., Crane L., “Relativistic spin networks and quantum gravity”, J. Math. Phys., 39 (1998), 3296–3302 ; gr-qc/9709028 | DOI | MR | Zbl

[6] Barrett J. W., Crane L., “A Lorentzian signature model for quantum general relativity”, Classical Quantum Gravity, 17 (2000), 3101–3118 ; gr-qc/9904025 | DOI | MR | Zbl

[7] Crane L., Perez A., Rovelli C., “Perturbative finiteness in spin-foam quantum gravity”, Phys. Rev. Lett., 87 (2001), 181301, 4 pp., ages | DOI | MR

[8] Baez J. C., Christensen J. D., Halford T. R., Tsang D. C., “Spin foam models of Riemannian quantum gravity”, Classical Quantum Gravity, 19 (2002), 4627–4648 ; gr-qc/0202017 | DOI | MR | Zbl

[9] MacDowell S. W., Mansouri F., “Unified geometric theory of gravity and supergravity”, Phys. Rev. Lett., 38 (1977), 739–742 | DOI | MR

[10] Smolin L., Starodubtsev A., General relativity with a topological phase: an action principle, hep-th/0311163

[11] Miković A., “Quantum gravity as a deformed topological quantum field theory”, J. Phys. Conf. Ser., 33 (2006), 266–270 ; gr-qc/0511077 | DOI

[12] Freidel L., Louapre D., “Diffeomorphisms and spin foam models”, Nuclear Phys. B, 662 (2003), 279–298 ; gr-qc/0212001 | DOI | MR | Zbl

[13] Freidel L., Louapre D., “Ponzano–Regge model revisited. I. Gauge fixing, observables and interacting spinning particles”, Classical Quantum Gravity, 21 (2004), 5685–5726 ; hep-th/0401076 | DOI | MR | Zbl