Fermion on Curved Spaces, Symmetries, and Quantum Anomalies
Symmetry, integrability and geometry: methods and applications, Tome 2 (2006) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We review the geodesic motion of pseudo-classical spinning particles in curved spaces. Investigating the generalized Killing equations for spinning spaces, we express the constants of motion in terms of Killing–Yano tensors. Passing from the spinning spaces to the Dirac equation in curved backgrounds we point out the role of the Killing–Yano tensors in the construction of the Dirac-type operators. The general results are applied to the case of the four-dimensional Euclidean Taub–Newman–Unti–Tamburino space. The gravitational and axial anomalies are studied for generalized Euclidean Taub-NUT metrics which admit hidden symmetries analogous to the Runge–Lenz vector of the Kepler-type problem. Using the Atiyah–Patodi–Singer index theorem for manifolds with boundaries, it is shown that the these metrics make no contribution to the axial anomaly.
Keywords: spinning particles; Dirac type operators; gravitational anomalies; axial anomalies.
@article{SIGMA_2006_2_a82,
     author = {Mihai Visinescu},
     title = {Fermion on {Curved} {Spaces,} {Symmetries,} and {Quantum} {Anomalies}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2006},
     volume = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a82/}
}
TY  - JOUR
AU  - Mihai Visinescu
TI  - Fermion on Curved Spaces, Symmetries, and Quantum Anomalies
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2006
VL  - 2
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a82/
LA  - en
ID  - SIGMA_2006_2_a82
ER  - 
%0 Journal Article
%A Mihai Visinescu
%T Fermion on Curved Spaces, Symmetries, and Quantum Anomalies
%J Symmetry, integrability and geometry: methods and applications
%D 2006
%V 2
%U http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a82/
%G en
%F SIGMA_2006_2_a82
Mihai Visinescu. Fermion on Curved Spaces, Symmetries, and Quantum Anomalies. Symmetry, integrability and geometry: methods and applications, Tome 2 (2006). http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a82/

[1] Yano K., “Some remarks on tensor fields and curvature”, Ann. Math., 55 (1952), 328–341 | DOI | MR

[2] Carter B., “Killing tensor quantum numbers and conserved currents in curved space”, Phys. Rev. D, 16 (1977), 3395–3414 | DOI | MR

[3] Gibbons G. W., Rietdijk R. H., van Holten J. W., “SUSY in the sky”, Nuclear Phys. B, 404 (1993), 42–64 ; hep-th/9303112 | DOI | MR | Zbl

[4] van Holten J. W., “Fermions and world-line supersymmetry”, Nuclear Phys. Proc. Suppl., 49 (1996), 319–325 ; hep-th/9512068 | DOI | MR | Zbl

[5] Cariglia M., “Quantum mechanics of Yano tensors: Dirac equation in curved spacetimes”, Classical Quantum Gravity, 21 (2004), 1051–1077 ; hep-th/0305153 | DOI | MR | Zbl

[6] Cotăescu I. I., Visinescu M., “Symmetries of the Dirac operators associated with covariantly constant Killing–Yano tensors”, Classical Quantum Gravity, 21 (2004), 11–28 ; hep-th/0301108 | DOI | MR | Zbl

[7] Berezin F. A., Marinov M. S., “Particle spin dynamics as the Grassmann variant of classical mechanics”, Ann. Physics, 104 (1977), 336–362 | DOI | Zbl

[8] Mohseni M., “Charged particles with spin in a gravitational wave and a uniform magnetic field”, Internat. J. Modern Phys. D, 15 (2006), 121–130 ; gr-qc/0510094 | DOI | MR | Zbl

[9] van Holten J. W., Rietdijk R. H., “Symmetries and motions in manifolds”, J. Geom. Phys., 11 (1993), 559–577 ; hep-th/9205074 | DOI | MR

[10] Taub A. H., “Empty space-times admitting a three parameter group of motions”, Ann. of Math., 53 (1951), 472–490 | DOI | MR | Zbl

[11] Newman E., Tamburino L., Unti T., “Empty-space generalization of the Schwartzschild metric”, J. Math. Phys., 4 (1963), 915–923 | DOI | MR | Zbl

[12] Hawking S. W., “Gravitational instantons”, Phys. Lett. A, 60 (1977), 81–83 | DOI | MR

[13] Gross D. J., Perry M. J., “Magnetic monopoles in Kaluza–Klein theories”, Nuclear Phys. B, 226 (1983), 29–48 | DOI | MR

[14] Sorkin R., “Kaluza–Klein monopoles”, Phys. Rev. Lett., 51 (1983), 87–90 | DOI | MR

[15] Atiyah M. F., Hitchin N. J., The geometry and dynamics of magnetic monopoles, Princeton University Press, Princeton, 1987 | MR

[16] Gibbons G. R., Ruback P. J., “The hidden symmetries of multi-centre metrics”, Comm. Math. Phys., 115 (1988), 267–300 | DOI | MR | Zbl

[17] Carter B., McLenaghan R. G., “Generalized total angular momentum operator for the Dirac equation in curved space-time”, Phys. Rev. D, 19 (1979), 1093–1097 | DOI | MR

[18] Visinescu M., “Generalized Taub-NUT metrics and Killing–Yano tensors”, J. Phys. A: Math. Gen., 33 (2000), 4383–4391 ; hep-th/9911126 | DOI | MR | Zbl

[19] Iwai T., Katayama N., “On extended Taub-NUT metrics”, J. Geom. Phys., 12 (1993), 55–75 | DOI | MR | Zbl

[20] Iwai T., Katayama N., “Two classes of dynamical systems all of whose bounded trajectories are closed”, J. Math. Phys., 35 (1994), 2914–2933 | DOI | MR | Zbl

[21] Iwai T., Katayama N., “Two kinds of generalized Taub-NUT metrics and the symmetry of associated dynamical systems”, J. Phys. A: Math. Gen., 27 (1994), 3179–3190 | DOI | MR | Zbl

[22] Cotăescu I., Moroianu S., Visinescu M., “Quantum anomalies for generalized Euclidean Taub-NUT metrics”, J. Phys. A: Math. Gen., 38 (2005), 7005–7019 ; math-ph/0411047 | DOI | MR | Zbl

[23] van Holten J. W., Waldron A., Peeters K., “An index theorem for non-standard Dirac operators”, Classical Quantum Gravity, 16 (1999), 2537–2544 ; hep-th/9901163 | DOI | MR | Zbl

[24] Vaman D., Visinescu M., “Spinning particles in Taub-NUT space”, Phys. Rev. D, 57 (1998), 3790–3793 ; hep-th/9707175 | DOI | MR

[25] Visinescu M., “The geodesic motion in Taub-NUT spinning space”, Classical Quantum Gravity, 11 (1994), 1867–1880 ; hep-th/9401036 | DOI | MR

[26] Baleanu D., “Spinning particles in the Euclidean Taub-NUT space”, Helv. Phys. Acta, 67 (1994), 405–418 | MR | Zbl

[27] Baleanu D., “Geodesic motion on extended Taub-NUT spinning space”, Gen. Relativity Gravitation, 30 (1998), 195–207 | DOI | MR

[28] Cotăescu I. I., Visinescu M., “Dynamical algebra and Dirac quantum modes in the Taub-NUT background”, Classical Quantum Gravity, 18 (2001), 3383–3393 ; hep-th/0102083 | DOI | MR | Zbl

[29] Cotăescu I. I., Visinescu M., “Runge–Lenz operator for Dirac field in Taub-NUT background”, Phys. Lett. B, 502 (2001), 229–234 ; hep-th/0101163 | DOI | MR | Zbl

[30] Cotăescu I. I., Visinescu M., “Schrödinger quantum modes in the Taub-NUT background”, Modern Phys. Lett. A, 15 (2000), 145–157 ; hep-th/9911014 | DOI | MR

[31] van Holten J. W., “Supersymmetry and the geometry of Taub-NUT”, Phys. Lett. B, 342 (1995), 47–52 | DOI | MR

[32] Cotăescu I. I., Visinescu M., “Hierarchy of Dirac, Pauli, and Klein–Gordon conserved operators in Taub-NUT background”, J. Math. Phys., 43 (2002), 2978–2987 ; hep-th/0107205 | DOI | MR | Zbl

[33] Vogel J. P. B., Yano tensors, in Essay in Partial Fulfillment of the Requirement for the Certificate of Advanced Study in Mathematics, unpublished, Private communication, Sidney Sussex College, Cambridge, UK, 2005

[34] Atiyah M. F., Patodi V. K., Singer I. M., “Spectral asymmetry and Riemannian geometry, I”, Math. Proc. Cambridge Philos. Soc., 77 (1975), 43–69 | DOI | MR | Zbl

[35] Moroianu S., Visinescu M., “Finiteness of the $L^2$-index of the Dirac operator of generalized Euclidean Taub-NUT metrics”, J. Phys. A: Math. Gen., 39 (2006), 6575–6581 ; math-ph/0511025 | DOI | MR

[36] Rietdijk R. H., Applications of supersymmetric quantum mechanics, PhD Thesis, Univ. Amsterdam, 1992

[37] Cotăescu I. I., Visinescu M., “Superalgebras of Dirac operators on manifolds with special Killing–Yano tensors”, Fortschr. Phys., 54 (2006), 1142–1164 ; hep-th/0601200 | DOI | MR | Zbl

[38] Gibbons G. W., Manton N. S., “Classical and quantum dynamics of BPS monopoles”, Nuclear Phys. B, 274 (1986), 183–224 | DOI | MR

[39] Feher L. Gy., Horvathy P. A., “Dynamical symmetry of monopole scattering”, Phys. Lett. B, 183 (1987), 182–186 | DOI | MR

[40] Cordani B., Feher L. Gy., Horvathy P. A., “$O(4,2)$ dynamical symmetry of the Kaluza–Klein monopole”, Phys. Lett. B, 201 (1988), 481–486 | DOI | MR

[41] Hitchin N., “Harmonic spinors”, Adv. Math., 14 (1974), 1–55 | DOI | MR | Zbl