@article{SIGMA_2006_2_a81,
author = {Hratchya M. Babujian and Angela Foerster and Michael Karowski},
title = {The {Form} {Factor} {Program:} {a~Review} and {New} {Results~{\textendash}} the {Nested} $\mathrm{SU}(N)$ {Off-Shell} {Bethe} {Ansatz}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2006},
volume = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a81/}
}
TY - JOUR
AU - Hratchya M. Babujian
AU - Angela Foerster
AU - Michael Karowski
TI - The Form Factor Program: a Review and New Results – the Nested $\mathrm{SU}(N)$ Off-Shell Bethe Ansatz
JO - Symmetry, integrability and geometry: methods and applications
PY - 2006
VL - 2
UR - http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a81/
LA - en
ID - SIGMA_2006_2_a81
ER -
%0 Journal Article
%A Hratchya M. Babujian
%A Angela Foerster
%A Michael Karowski
%T The Form Factor Program: a Review and New Results – the Nested $\mathrm{SU}(N)$ Off-Shell Bethe Ansatz
%J Symmetry, integrability and geometry: methods and applications
%D 2006
%V 2
%U http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a81/
%G en
%F SIGMA_2006_2_a81
Hratchya M. Babujian; Angela Foerster; Michael Karowski. The Form Factor Program: a Review and New Results – the Nested $\mathrm{SU}(N)$ Off-Shell Bethe Ansatz. Symmetry, integrability and geometry: methods and applications, Tome 2 (2006). http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a81/
[1] Heisenberg W., “Der mathematische Rahmen der Quantentheorie der Wellenfelder”, Zeitschrift für Naturforschung, 1 (1946), 608–622 | MR | Zbl
[2] Chew G., The $S$-matrix theory of strong interaction, W. A. Benjamin Inc., New York, 1961 | MR
[3] Schroer B., Truong T. T., Weisz P., “Towards an explicit construction of the sine-Gordon theory”, Phys. Lett. B, 63 (1976), 422–424 | DOI
[4] Karowski M., Thun H. J., Truong T. T., Weisz P., “On the uniqueness of a purely elastic S matrix in $1+1$ dimensions”, Phys. Lett. B, 67 (1977), 321–322 | DOI
[5] Karowski M., Thun H. J., “Complete S matrix of the massive Thirring model”, Nuclear Phys. B, 130 (1977), 295–308 | DOI
[6] Zamolodchikov A. B., Zamolodchikov A. B., “Factorized $S$-matrices in two dimensions as the exact solutions of certain relativistic quantum field models”, Annals Phys., 120 (1979), 253–291 | DOI | MR
[7] Berg B., Karowski M., Weisz P., “Construction of Green functions from an exact $S$ matrix”, Phys. Rev. D, 19 (1979), 2477–2479 | DOI
[8] Karowski M., Weisz P., “Exact form factors in $(1+1)$-dimensional field theoretic models with soliton behavior”, Nuclear Phys. B, 139 (1978), 455–476 | DOI | MR
[9] Smirnov F. A., Form factors in completely integrable models of quantum field theory, Adv. Series in Math. Phys., 14, World Scientific, 1992 | MR | Zbl
[10] Babujian H. M., Fring A., Karowski M., Zapletal A., “Exact form factors in integrable quantum field theories: the sine-Gordon model”, Nuclear Phys. B, 538 (1999), 535–586 ; hep-th/9805185 | DOI | MR | Zbl
[11] Babujian H., Foerster A., Karowski M., “The nested $SU(N)$ off-shell Bethe ansatz and exact form factors”, J. Phys. A: Math. Theor., 41 (2008), 275202, 21 pp. ; hep-th/0611012 | DOI | MR | Zbl
[12] Babujian H., Karowski M., “Exact form factors for the scaling $Z(N)$-Ising and the affine $A(N-1)$ Toda quantum field theories”, Phys. Lett. B, 575 (2003), 144–150 ; hep-th/0309018 | DOI | MR | Zbl
[13] Babujian H., Foerster A., Karowski M., “Exact form factors in integrable quantum field theories: the scaling $Z(N)$-Ising model”, Nuclear Phys. B, 736 (2006), 169–198 ; hep-th/0510062 | DOI | MR | Zbl
[14] Babujian H. M., “Correlation function in WZNW model as a Bethe wave function for the Gaudin magnetics”, Theory of Elementary Particles, Proceedings (Gosen, 1990), 1990, 12–23, see High Energy Physics Index, 1991, V. 29, N 1225729
[15] Babujian H. M., “Off-shell Bethe ansatz equation and $N$ point correlators in $SU(2)$ WZNW theory”, J. Phys. A: Math. Gen., 26 (1993), 6981–6990 | DOI | MR | Zbl
[16] Babujian H. M., Flume R., “Off-shell Bethe ansatz equation for Gaudin magnets and solutions of Knizhnik–Zamolodchikov equations”, Modern Phys. Lett. A, 9 (1994), 2029–2040 ; hep-th/9310110 | DOI | MR
[17] Frenkel I. B., Reshetikhin N. Y., “Quantum affine algebras and holonomic difference equations”, Comm. Math. Phys., 146 (1992), 1–60 | DOI | MR | Zbl
[18] Schechtman V., Varchenko A., “Arrangements of hyerplanes and Lie algebra homology”, Invent. Math., 106 (1991), 139–194 | DOI | MR | Zbl
[19] Bariev R. Z., “On the rotational symmetry of the spin correlation function of the two-dimensional Ising model”, Phys. Lett. A, 55 (1976), 456–458 | DOI
[20] McCoy B., Tracy C. A., Wu T. T., “Two-dimensional Ising model as an exactly solvable relativistic quantum field theory: explicit formulas for n point functions”, Phys. Rev. Lett., 38 (1977), 793–796 | DOI
[21] Sato M., Miwa T., Jimbo M., “Studies on holonomic quantum fields, I”, Proc. Japan Acad. A, 53 (1977), 6–146 | DOI | MR
[22] Yurov V. P., Zamolodchikov Al. B., “Truncated fermionic space approach to the critical 2-D Ising model with magnetic field”, Internat. J. Modern Phys. A, 6 (1991), 4557–4578 | DOI | MR
[23] Babujian H., Karowski M., “Towards the construction of Wightman functions of integrable quantum field theories”, Internat. J. Modern Phys. A, 19S2 (2003), 34–49 ; hep-th/0301088 | MR
[24] Smirnov F. A., private communication
[25] Lechner G., An existence proof for interacting quantum field theories with a factorizing $S$-matrix, math-ph/0601022
[26] Schroer B., “Modular localization and the bootstrap-formfactor program”, Nuclear Phys. B, 499 (1997), 547–568 ; hep-th/9702145 | DOI | MR | Zbl
[27] Schroer B., “Modular wedge localization and the $d=1+1$ formfactor program”, Annals Phys., 275 (1999), 190–223 ; hep-th/9712124 | DOI | MR | Zbl
[28] Schroer B., Wiesbrock H. W., “Modular constructions of quantum field theories with interactions”, Rev. Math. Phys., 12 (2000), 301–326 ; hep-th/9812251 | DOI | MR | Zbl
[29] Korepin V. E., Oota T., “A determinant representation for a correlation function of the scaling Lee–Yang model”, J. Phys. A: Math. Gen., 31 (1998), L371–L380 ; hep-th/9802003 | DOI | MR | Zbl
[30] Korepin V. E., Slavnov N. A., “The determinant representation for quantum correlation functions of the sinh-Gordon model”, J. Phys. A: Math. Gen., 31 (1998), 9283–9295 ; hep-th/9801046 | DOI | MR | Zbl
[31] Karowski M., “On the bound state problem in $(1+1)$ dimensional field theories”, Nuclear Phys. B, 153 (1979), 244–252 | DOI
[32] Babujian H., Karowski M., “Exact form factors in integrable quantum field theories: the sine-Gordon model (II)”, Nuclear Phys. B, 620 (2002), 407–455 ; hep-th/0105178 | DOI | MR | Zbl
[33] Berg B., Karowski M., Kurak V., Weisz P., “Factorized $U(n)$ symmetric S-matrices in two dimensions”, Nuclear Phys. B, 134 (1978), 125–132 | DOI | MR
[34] Kurak V., Swieca J. A., “Anti-particles as bound states of particles in the factorized S-matrix framework”, Phys. Lett. B, 82 (1979), 289–291 | DOI
[35] Köberle R., Swieca J. A., “Factorizable $Z(N)$ models”, Phys. Lett. B, 86 (1979), 209–210 | DOI
[36] Köberle R., Kurak V., Swieca J. A., “Scattering theory and $1/N$ expansion in the chiral Gross–Neveu model”, Phys. Rev. D, 20 (1979), 897–902 | DOI
[37] Berg B., Weisz P., “Exact S-matrix of the chiral invariant $SU(N)$ Thirring model”, Nuclear Phys. B, 146 (1979), 205–214 | DOI
[38] Abdalla E., Berg B., Weisz P., “More about the $S$-matrix of the chiral $SU(N)$ Thirring model”, Nuclear Phys. B, 157 (1979), 387–391 | DOI
[39] Belavin A. A., “Exact solution of the two-dimensional model with asymptotic freedom”, Phys. Lett. B, 87 (1979), 117–121 | DOI
[40] Lehmann H., Symanzik K., Zimmermann W., “On the formulation of quantized field theories”, Nuovo Cimento, 1 (1955), 205–225 | DOI | MR | Zbl
[41] Karowski M., “The bootstrap program for $1+1$ dimensional field theoretic models with soliton behavior”, Field Theoretic Methods in Particle Physics, ed. W. Rühl, Plenum Pub. Co., New York, 1980, 307–324 | MR
[42] Watson K. M., “Some general relations between the photoproduction and scattering of $\pi$ mesons”, Phys. Rev., 95 (1954), 228–236 | DOI | Zbl
[43] Nakayashiki A., Takeyama Y., “On form factors of $SU(2)$ invariant Thirring model in MathPhys Odyssey 2001, Integrable Models and Beyond – in Honor of Barry M. McCoy”, Progr. in Math. Phys., eds. M. Kashiwara and T. Miwa, Birkäuser, 2002, 357–390 ; math-ph/0105040 | MR | Zbl
[44] Takeyama Y., “Form factors of $SU(N)$ invariant Thirring model”, Publ. Res. Inst. Math. Sci. Kyoto, 39 (2003), 59–116 ; math-ph/0112025 | DOI | MR | Zbl
[45] Babujian H., Karowski M., “Sine-Gordon form factors and quantum field equations”, J. Phys. A: Math. Gen., 35 (2002), 9081–9104 ; hep-th/0204097 | DOI | MR | Zbl
[46] Fring A., Mussardo G., Simonetti P., “Form-factors for integrable Lagrangian field theories, the sinh-Gordon theory”, Nuclear Phys. B, 393 (1993), 413–441 ; hep-th/9211053 | DOI | MR
[47] Koubeck A., Mussardo G., “On the operator content of the sinh-Gordon model”, Phys. Lett. B, 311 (1993), 193–201 | DOI | MR
[48] Brazhnikov V., Lukyanov S., “Angular quantization and form factors in massive integrable models”, Nuclear Phys. B, 512 (1998), 616–636 ; hep-th/9707091 | DOI | MR
[49] Babujian H., Karowski M., “The exact quantum sine-Gordon field equation and other non-perturbative results”, Phys. Lett. B, 411 (1999), 53–57 ; hep-th/9909153 | MR
[50] Smirnov F. A., “Reductions of the sine-Gordon model as a perturbation of minimal models of conformal field theory”, Nuclear Phys. B, 337 (1990), 156–180 | DOI | MR
[51] Zamolodchikov A. B., “Irreversibility of the flux of the renormalization group in a 2-D field theory”, JETP Lett., 43 (1986), 730–732 | MR
[52] Cardy J. L., “The central charge and universal combinations of amplitudes in two-dimensional theories away from criticality”, Phys. Rev. Lett., 60 (1988), 2709–2711 | DOI | MR
[53] Lukyanov S., Zamolodchikov A. B., “Exact expectation values of local fields in quantum sine-Gordon model”, Nuclear Phys. B, 493 (1997), 571–587 ; hep-th/9611238 | DOI | MR | Zbl
[54] Babujian H., Karowski M., Short distance behavior of integrable quantum field theories and exact Wightman functions – summation over all intermediate states, in preparation