The Form Factor Program: a Review and New Results – the Nested $\mathrm{SU}(N)$ Off-Shell Bethe Ansatz
Symmetry, integrability and geometry: methods and applications, Tome 2 (2006) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The purpose of the “bootstrap program” for integrable quantum field theories in $1+1$ dimensions is to construct explicitly a model in terms of its Wightman functions. In this article, this program is mainly illustrated in terms of the sinh-Gordon model and the $SU(N)$ Gross–Neveu model. The nested off-shell Bethe ansatz for an $SU( N)$ factorizing S-matrix is constructed. We review some previous results on sinh-Gordon form factors and the quantum operator field equation. The problem of how to sum over intermediate states is considered in the short distance limit of the two point Wightman function for the sinh-Gordon model.
Keywords: integrable quantum field theory; form factors.
@article{SIGMA_2006_2_a81,
     author = {Hratchya M. Babujian and Angela Foerster and Michael Karowski},
     title = {The {Form} {Factor} {Program:} {a~Review} and {New} {Results~{\textendash}} the {Nested} $\mathrm{SU}(N)$ {Off-Shell} {Bethe} {Ansatz}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2006},
     volume = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a81/}
}
TY  - JOUR
AU  - Hratchya M. Babujian
AU  - Angela Foerster
AU  - Michael Karowski
TI  - The Form Factor Program: a Review and New Results – the Nested $\mathrm{SU}(N)$ Off-Shell Bethe Ansatz
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2006
VL  - 2
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a81/
LA  - en
ID  - SIGMA_2006_2_a81
ER  - 
%0 Journal Article
%A Hratchya M. Babujian
%A Angela Foerster
%A Michael Karowski
%T The Form Factor Program: a Review and New Results – the Nested $\mathrm{SU}(N)$ Off-Shell Bethe Ansatz
%J Symmetry, integrability and geometry: methods and applications
%D 2006
%V 2
%U http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a81/
%G en
%F SIGMA_2006_2_a81
Hratchya M. Babujian; Angela Foerster; Michael Karowski. The Form Factor Program: a Review and New Results – the Nested $\mathrm{SU}(N)$ Off-Shell Bethe Ansatz. Symmetry, integrability and geometry: methods and applications, Tome 2 (2006). http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a81/

[1] Heisenberg W., “Der mathematische Rahmen der Quantentheorie der Wellenfelder”, Zeitschrift für Naturforschung, 1 (1946), 608–622 | MR | Zbl

[2] Chew G., The $S$-matrix theory of strong interaction, W. A. Benjamin Inc., New York, 1961 | MR

[3] Schroer B., Truong T. T., Weisz P., “Towards an explicit construction of the sine-Gordon theory”, Phys. Lett. B, 63 (1976), 422–424 | DOI

[4] Karowski M., Thun H. J., Truong T. T., Weisz P., “On the uniqueness of a purely elastic S matrix in $1+1$ dimensions”, Phys. Lett. B, 67 (1977), 321–322 | DOI

[5] Karowski M., Thun H. J., “Complete S matrix of the massive Thirring model”, Nuclear Phys. B, 130 (1977), 295–308 | DOI

[6] Zamolodchikov A. B., Zamolodchikov A. B., “Factorized $S$-matrices in two dimensions as the exact solutions of certain relativistic quantum field models”, Annals Phys., 120 (1979), 253–291 | DOI | MR

[7] Berg B., Karowski M., Weisz P., “Construction of Green functions from an exact $S$ matrix”, Phys. Rev. D, 19 (1979), 2477–2479 | DOI

[8] Karowski M., Weisz P., “Exact form factors in $(1+1)$-dimensional field theoretic models with soliton behavior”, Nuclear Phys. B, 139 (1978), 455–476 | DOI | MR

[9] Smirnov F. A., Form factors in completely integrable models of quantum field theory, Adv. Series in Math. Phys., 14, World Scientific, 1992 | MR | Zbl

[10] Babujian H. M., Fring A., Karowski M., Zapletal A., “Exact form factors in integrable quantum field theories: the sine-Gordon model”, Nuclear Phys. B, 538 (1999), 535–586 ; hep-th/9805185 | DOI | MR | Zbl

[11] Babujian H., Foerster A., Karowski M., “The nested $SU(N)$ off-shell Bethe ansatz and exact form factors”, J. Phys. A: Math. Theor., 41 (2008), 275202, 21 pp. ; hep-th/0611012 | DOI | MR | Zbl

[12] Babujian H., Karowski M., “Exact form factors for the scaling $Z(N)$-Ising and the affine $A(N-1)$ Toda quantum field theories”, Phys. Lett. B, 575 (2003), 144–150 ; hep-th/0309018 | DOI | MR | Zbl

[13] Babujian H., Foerster A., Karowski M., “Exact form factors in integrable quantum field theories: the scaling $Z(N)$-Ising model”, Nuclear Phys. B, 736 (2006), 169–198 ; hep-th/0510062 | DOI | MR | Zbl

[14] Babujian H. M., “Correlation function in WZNW model as a Bethe wave function for the Gaudin magnetics”, Theory of Elementary Particles, Proceedings (Gosen, 1990), 1990, 12–23, see High Energy Physics Index, 1991, V. 29, N 1225729

[15] Babujian H. M., “Off-shell Bethe ansatz equation and $N$ point correlators in $SU(2)$ WZNW theory”, J. Phys. A: Math. Gen., 26 (1993), 6981–6990 | DOI | MR | Zbl

[16] Babujian H. M., Flume R., “Off-shell Bethe ansatz equation for Gaudin magnets and solutions of Knizhnik–Zamolodchikov equations”, Modern Phys. Lett. A, 9 (1994), 2029–2040 ; hep-th/9310110 | DOI | MR

[17] Frenkel I. B., Reshetikhin N. Y., “Quantum affine algebras and holonomic difference equations”, Comm. Math. Phys., 146 (1992), 1–60 | DOI | MR | Zbl

[18] Schechtman V., Varchenko A., “Arrangements of hyerplanes and Lie algebra homology”, Invent. Math., 106 (1991), 139–194 | DOI | MR | Zbl

[19] Bariev R. Z., “On the rotational symmetry of the spin correlation function of the two-dimensional Ising model”, Phys. Lett. A, 55 (1976), 456–458 | DOI

[20] McCoy B., Tracy C. A., Wu T. T., “Two-dimensional Ising model as an exactly solvable relativistic quantum field theory: explicit formulas for n point functions”, Phys. Rev. Lett., 38 (1977), 793–796 | DOI

[21] Sato M., Miwa T., Jimbo M., “Studies on holonomic quantum fields, I”, Proc. Japan Acad. A, 53 (1977), 6–146 | DOI | MR

[22] Yurov V. P., Zamolodchikov Al. B., “Truncated fermionic space approach to the critical 2-D Ising model with magnetic field”, Internat. J. Modern Phys. A, 6 (1991), 4557–4578 | DOI | MR

[23] Babujian H., Karowski M., “Towards the construction of Wightman functions of integrable quantum field theories”, Internat. J. Modern Phys. A, 19S2 (2003), 34–49 ; hep-th/0301088 | MR

[24] Smirnov F. A., private communication

[25] Lechner G., An existence proof for interacting quantum field theories with a factorizing $S$-matrix, math-ph/0601022

[26] Schroer B., “Modular localization and the bootstrap-formfactor program”, Nuclear Phys. B, 499 (1997), 547–568 ; hep-th/9702145 | DOI | MR | Zbl

[27] Schroer B., “Modular wedge localization and the $d=1+1$ formfactor program”, Annals Phys., 275 (1999), 190–223 ; hep-th/9712124 | DOI | MR | Zbl

[28] Schroer B., Wiesbrock H. W., “Modular constructions of quantum field theories with interactions”, Rev. Math. Phys., 12 (2000), 301–326 ; hep-th/9812251 | DOI | MR | Zbl

[29] Korepin V. E., Oota T., “A determinant representation for a correlation function of the scaling Lee–Yang model”, J. Phys. A: Math. Gen., 31 (1998), L371–L380 ; hep-th/9802003 | DOI | MR | Zbl

[30] Korepin V. E., Slavnov N. A., “The determinant representation for quantum correlation functions of the sinh-Gordon model”, J. Phys. A: Math. Gen., 31 (1998), 9283–9295 ; hep-th/9801046 | DOI | MR | Zbl

[31] Karowski M., “On the bound state problem in $(1+1)$ dimensional field theories”, Nuclear Phys. B, 153 (1979), 244–252 | DOI

[32] Babujian H., Karowski M., “Exact form factors in integrable quantum field theories: the sine-Gordon model (II)”, Nuclear Phys. B, 620 (2002), 407–455 ; hep-th/0105178 | DOI | MR | Zbl

[33] Berg B., Karowski M., Kurak V., Weisz P., “Factorized $U(n)$ symmetric S-matrices in two dimensions”, Nuclear Phys. B, 134 (1978), 125–132 | DOI | MR

[34] Kurak V., Swieca J. A., “Anti-particles as bound states of particles in the factorized S-matrix framework”, Phys. Lett. B, 82 (1979), 289–291 | DOI

[35] Köberle R., Swieca J. A., “Factorizable $Z(N)$ models”, Phys. Lett. B, 86 (1979), 209–210 | DOI

[36] Köberle R., Kurak V., Swieca J. A., “Scattering theory and $1/N$ expansion in the chiral Gross–Neveu model”, Phys. Rev. D, 20 (1979), 897–902 | DOI

[37] Berg B., Weisz P., “Exact S-matrix of the chiral invariant $SU(N)$ Thirring model”, Nuclear Phys. B, 146 (1979), 205–214 | DOI

[38] Abdalla E., Berg B., Weisz P., “More about the $S$-matrix of the chiral $SU(N)$ Thirring model”, Nuclear Phys. B, 157 (1979), 387–391 | DOI

[39] Belavin A. A., “Exact solution of the two-dimensional model with asymptotic freedom”, Phys. Lett. B, 87 (1979), 117–121 | DOI

[40] Lehmann H., Symanzik K., Zimmermann W., “On the formulation of quantized field theories”, Nuovo Cimento, 1 (1955), 205–225 | DOI | MR | Zbl

[41] Karowski M., “The bootstrap program for $1+1$ dimensional field theoretic models with soliton behavior”, Field Theoretic Methods in Particle Physics, ed. W. Rühl, Plenum Pub. Co., New York, 1980, 307–324 | MR

[42] Watson K. M., “Some general relations between the photoproduction and scattering of $\pi$ mesons”, Phys. Rev., 95 (1954), 228–236 | DOI | Zbl

[43] Nakayashiki A., Takeyama Y., “On form factors of $SU(2)$ invariant Thirring model in MathPhys Odyssey 2001, Integrable Models and Beyond – in Honor of Barry M. McCoy”, Progr. in Math. Phys., eds. M. Kashiwara and T. Miwa, Birkäuser, 2002, 357–390 ; math-ph/0105040 | MR | Zbl

[44] Takeyama Y., “Form factors of $SU(N)$ invariant Thirring model”, Publ. Res. Inst. Math. Sci. Kyoto, 39 (2003), 59–116 ; math-ph/0112025 | DOI | MR | Zbl

[45] Babujian H., Karowski M., “Sine-Gordon form factors and quantum field equations”, J. Phys. A: Math. Gen., 35 (2002), 9081–9104 ; hep-th/0204097 | DOI | MR | Zbl

[46] Fring A., Mussardo G., Simonetti P., “Form-factors for integrable Lagrangian field theories, the sinh-Gordon theory”, Nuclear Phys. B, 393 (1993), 413–441 ; hep-th/9211053 | DOI | MR

[47] Koubeck A., Mussardo G., “On the operator content of the sinh-Gordon model”, Phys. Lett. B, 311 (1993), 193–201 | DOI | MR

[48] Brazhnikov V., Lukyanov S., “Angular quantization and form factors in massive integrable models”, Nuclear Phys. B, 512 (1998), 616–636 ; hep-th/9707091 | DOI | MR

[49] Babujian H., Karowski M., “The exact quantum sine-Gordon field equation and other non-perturbative results”, Phys. Lett. B, 411 (1999), 53–57 ; hep-th/9909153 | MR

[50] Smirnov F. A., “Reductions of the sine-Gordon model as a perturbation of minimal models of conformal field theory”, Nuclear Phys. B, 337 (1990), 156–180 | DOI | MR

[51] Zamolodchikov A. B., “Irreversibility of the flux of the renormalization group in a 2-D field theory”, JETP Lett., 43 (1986), 730–732 | MR

[52] Cardy J. L., “The central charge and universal combinations of amplitudes in two-dimensional theories away from criticality”, Phys. Rev. Lett., 60 (1988), 2709–2711 | DOI | MR

[53] Lukyanov S., Zamolodchikov A. B., “Exact expectation values of local fields in quantum sine-Gordon model”, Nuclear Phys. B, 493 (1997), 571–587 ; hep-th/9611238 | DOI | MR | Zbl

[54] Babujian H., Karowski M., Short distance behavior of integrable quantum field theories and exact Wightman functions – summation over all intermediate states, in preparation