On Action Invariance under Linear Spinor-Vector Supersymmetry
Symmetry, integrability and geometry: methods and applications, Tome 2 (2006)
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We show explicitly that a free Lagrangian expressed in terms of scalar, spinor, vector and Rarita–Schwinger (RS) fields is invariant under linear supersymmetry transformations generated by a global spinor-vector parameter. A (generalized) gauge invariance of the Lagrangian for the RS field is also discussed.
Keywords: spinor-vector supersymmetry; Rarita–Schwinger field.
@article{SIGMA_2006_2_a8,
     author = {Kazunari Shima and Motomu Tsuda},
     title = {On {Action} {Invariance} under {Linear} {Spinor-Vector} {Supersymmetry}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2006},
     volume = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a8/}
}
TY  - JOUR
AU  - Kazunari Shima
AU  - Motomu Tsuda
TI  - On Action Invariance under Linear Spinor-Vector Supersymmetry
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2006
VL  - 2
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a8/
LA  - en
ID  - SIGMA_2006_2_a8
ER  - 
%0 Journal Article
%A Kazunari Shima
%A Motomu Tsuda
%T On Action Invariance under Linear Spinor-Vector Supersymmetry
%J Symmetry, integrability and geometry: methods and applications
%D 2006
%V 2
%U http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a8/
%G en
%F SIGMA_2006_2_a8
Kazunari Shima; Motomu Tsuda. On Action Invariance under Linear Spinor-Vector Supersymmetry. Symmetry, integrability and geometry: methods and applications, Tome 2 (2006). http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a8/

[1] Wess J., Zumino B., “A Lagrangian model invariant under supergauge transformations”, Phys. Lett. B, 49 (1974), 52–75 | DOI

[2] Volkov D. V., Akulov V. P., “Possible universal neutrino interaction”, JETP Lett., 16 (1972), 438–440 ; Volkov D. V., Akulov V. P., “Is the neutrino a goldstone particle?”, Phys. Lett. B, 46 (1973), 109–110 | DOI

[3] Ivanov E. A., Kapustnikov A. A., Relation between linear and nonlinear realizations of supersymmetry, JINR Report No. E2-10765, Dubna, 1977, unpublished; Ivanov E. A., Kapustnikov A.A., “General relationship between linear and nonlinear realisations of supersymmetry”, J. Phys. A: Math. Gen., 11 (1978), 2375–2384 ; Ivanov E. A., Kapustnikov A. A., “The non-linear realization structure of models with spontaneously broken supersymmetry”, J. Phys. G, 8 (1982), 167–191 | DOI | MR | DOI

[4] Roček M., “Linearizing the Volkov–Akulov model”, Phys. Rev. Lett., 41 (1978), 451–453 | DOI

[5] Uematsu T., Zachos C. K., “Structure of phenomenological Lagrangians for broken supersymmetry”, Nucl. Phys. B, 201 (1982), 250–268 | DOI

[6] Shima K., Tanii Y., Tsuda M., “On linearization of $N=1$ nonlinear supersymmetry”, Phys. Lett. B, 525 (2002), 183–188 ; ; Shima K., Tanii Y., Tsuda M., “Linearizing $N=2$ nonlinear supersymmetry”, Phys. Lett. B, 546 (2002), 162–166 ; arXiv:hep-th/0110102arXiv:hep-th/0205178 | DOI | MR | Zbl | DOI | MR | Zbl

[7] Baaklini N. S., “New superalgebra and Goldstone spin-3/2 particle”, Phys. Lett. B, 67 (1977), 335–336 | DOI | MR

[8] Shima K., “$SO(N)$ supergravity and unification of all fundamental forces”, Z. Phys. C, 18 (1983), 25–30 ; Shima K., “Superon-quintet and graviton model for supersymmetric spacetime and matter”, Eur. Phys. J. C, 7 (1999), 341–345 ; Shima K., “Supersymmetric structure of space-time and matter: superon-graviton model”, Phys. Lett. B, 501 (2001), 237–244 | DOI | DOI | MR | Zbl

[9] Shima K., Tsuda M., “On gravitational interaction of spin 3/2 Nambu–Goldstone fermion”, Phys. Lett. B, 521 (2001), 67–70 ; arXiv:hep-th/0012235 | DOI | MR | Zbl

[10] Deser S., Zumino B., “Broken supersymmetry and supergravity”, Phys. Rev. Lett., 38 (1977), 1433–1436 | DOI

[11] Shima K., Tsuda M., “On supersymmetry algebra based on a spinor-vector generator”, Phys. Lett. B, 628 (2005), 171–175 ; arXiv:hep-th/0507288 | DOI | MR

[12] Coleman S., Mandula J., “All possible symmetries of the $S$ matrix”, Phys. Rev., 159 (1967), 1251–1256 | DOI | Zbl

[13] Haag R., Lopuszanski J., Sohnius M., “All possible generators of supersymmetries of the $S$ matrix”, Nucl. Phys. B, 88 (1975), 257–274 | DOI | MR