A Formula for the Logarithm of the KZ Associator
Symmetry, integrability and geometry: methods and applications, Tome 2 (2006)
Cet article a éte moissonné depuis la source Math-Net.Ru
We prove that the logarithm of a group-like element in a free algebra coincides with its image by a certain linear map. We use this result and the formula of Le and Murakami for the Knizhnik–Zamolodchikov (KZ) associator $\Phi$ to derive a formula for $\log(\Phi)$ in terms of MZV's (multiple zeta values).
Keywords:
free Lie algebras; Campbell–Baker–Hausdorff series, Knizhnik–Zamolodchikov associator.
@article{SIGMA_2006_2_a79,
author = {Benjamin Enriquez and Fabio Gavarini},
title = {A~Formula for the {Logarithm} of the {KZ} {Associator}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2006},
volume = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a79/}
}
Benjamin Enriquez; Fabio Gavarini. A Formula for the Logarithm of the KZ Associator. Symmetry, integrability and geometry: methods and applications, Tome 2 (2006). http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a79/
[1] Drinfeld V., “On quasitriangular quasi-Hopf algebras and a group closely connected with $\mathrm{Gal}(\overline{\mathbb Q}/\mathbb Q)$”, Leningrad Math. J., 2 (1991), 829–860 | MR
[2] Enriquez B., Quasi-reflection algebras, multiple polylogarithms at roots of 1, and analogues of the group GT, math.QA/0408035 | MR
[3] Le T. T. Q., Murakami J., “Kontsevich's integral for the Kauffman polynomial”, Nagoya Math. J., 142 (1996), 39–65 | MR | Zbl
[4] Reutenauer C., Free Lie algebras, Oxford Science Publications, London Mathematical Society Monographs. New Series, 7, The Clarendon Press, Oxford University Press, New York, 1993 | MR