$u$-Deformed WZW Model and Its Gauging
Symmetry, integrability and geometry: methods and applications, Tome 2 (2006) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We review the description of a particular deformation of the WZW model. The resulting theory exhibits a Poisson–Lie symmetry with a non-Abelian cosymmetry group and can be vectorially gauged.
Keywords: gauged WZW model; Poisson–Lie symmetry.
@article{SIGMA_2006_2_a78,
     author = {Ctirad Klim\v{c}{\'\i}k},
     title = {$u${-Deformed} {WZW} {Model} and {Its} {Gauging}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2006},
     volume = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a78/}
}
TY  - JOUR
AU  - Ctirad Klimčík
TI  - $u$-Deformed WZW Model and Its Gauging
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2006
VL  - 2
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a78/
LA  - en
ID  - SIGMA_2006_2_a78
ER  - 
%0 Journal Article
%A Ctirad Klimčík
%T $u$-Deformed WZW Model and Its Gauging
%J Symmetry, integrability and geometry: methods and applications
%D 2006
%V 2
%U http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a78/
%G en
%F SIGMA_2006_2_a78
Ctirad Klimčík. $u$-Deformed WZW Model and Its Gauging. Symmetry, integrability and geometry: methods and applications, Tome 2 (2006). http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a78/

[1] Balog J., Fehér L., Palla L., “Chiral extensions of the WZNW phase space, Poisson–Lie symmetries and groupoids”, Nucl. Phys. B, 568 (2000), 503–542 ; hep-th/9910046 | DOI | MR | Zbl

[2] Klimčík C., “Quasitriangular WZW model”, Rev. Math. Phys., 16 (2004), 679–808 ; hep-th/0103118 | DOI | MR | Zbl

[3] Klimčík C., “Poisson–Lie symmetry and $q$-WZW model”, Proceedings of the 4th International Symposium “Quantum Theory and Symmetries”, V. 1 (August 15–21, 2005, Varna), Heron Press, Sofia, 2006, 382–393 ; hep-th/0511003 | MR

[4] Klimčík C., “On moment maps associated to a twisted Heisenberg double”, Rev. Math. Phys., 18 (2006), 781–821 ; math-ph/0602048 | DOI | MR | Zbl

[5] Semenov-Tian-Shansky M., “Poisson Lie groups, quantum duality principle and the twisted quantum double”, Theor. Math. Phys., 93:2 (1992), 1292–1307 ; hep-th/9304042 | DOI | MR

[6] Witten E., “Non-Abelian bosonisation in two dimensions”, Comm. Math. Phys., 92 (1984), 455–472 | DOI | MR | Zbl