Integrable Hierarchy of Higher Nonlinear Schrödinger Type Equations
Symmetry, integrability and geometry: methods and applications, Tome 2 (2006) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Addition of higher nonlinear terms to the well known integrable nonlinear Schrödinger (NLS) equations, keeping the same linear dispersion (LD) usually makes the system nonintegrable. We present a systematic method through a novel Eckhaus–Kundu hierarchy, which can generate higher nonlinearities in the NLS and derivative NLS equations preserving their integrability. Moreover, similar nonlinear integrable extensions can be made again in a hierarchical way for each of the equations in the known integrable NLS and derivative NLS hierarchies with higher order LD, without changing their LD.
Keywords: NLSE & DNLSE; higher nonlinearity; linear dispersion preservation; integrable Eckhaus–Kundu hierarchy.
@article{SIGMA_2006_2_a77,
     author = {Anjan Kundu},
     title = {Integrable {Hierarchy} of {Higher} {Nonlinear} {Schr\"odinger} {Type} {Equations}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2006},
     volume = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a77/}
}
TY  - JOUR
AU  - Anjan Kundu
TI  - Integrable Hierarchy of Higher Nonlinear Schrödinger Type Equations
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2006
VL  - 2
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a77/
LA  - en
ID  - SIGMA_2006_2_a77
ER  - 
%0 Journal Article
%A Anjan Kundu
%T Integrable Hierarchy of Higher Nonlinear Schrödinger Type Equations
%J Symmetry, integrability and geometry: methods and applications
%D 2006
%V 2
%U http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a77/
%G en
%F SIGMA_2006_2_a77
Anjan Kundu. Integrable Hierarchy of Higher Nonlinear Schrödinger Type Equations. Symmetry, integrability and geometry: methods and applications, Tome 2 (2006). http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a77/

[1] Agarwal G., Nonlinear fiber optics, Elsevier, 2001, p. 50 | Zbl

[2] Johnson R. S., “On the modulation of water waves in the neighbourhood of $kh\approx 1.363$”, Proc. Roy. Soc. London Ser. A, 357 (1977), 131–141 | DOI | MR | Zbl

[3] Benney D. J., “A general theory for interactions between short and long waves”, Studies in Appl. Math., 57 (1976/77), 81–94 | MR

[4] Kakutani T., Michihiro K., “Marginal state of modulational instability-mode of Benjamin Feir instability”, J. Phys. Soc. Japan, 52 (1983), 4129–4137 | DOI

[5] Parkes E. J., “The modulation of weakly non-linear dispersive waves near the marginal state of instability”, J. Phys. A: Math. Gen., 20 (1987), 2025–2036 | DOI

[6] Ndohi R., Kofane T. C., “Solitary waves in ferromagnetic chains near the marginal state of instabilit”, Phys. Lett. A, 154 (1991), 377–380 | DOI

[7] Pelap F. B., Faye M. M., “Solitonlike excitations in a one-dimensional electrical transmission line”, J. Math. Phys., 46 (2005), 033502, 10 pp., ages | DOI | MR | Zbl

[8] Sakovich S. Yu., Integrability of the higher order NLS revisited, nlin.SI/9906012

[9] Kindyak A. S., Scott M. M., Patton C. E., “Theoretical analysis of nonlinear pulse propagation in ferrite-dielectric-metal structures based on the nonlinear Schrödinger equation with higher order terms”, J. Appl. Phys., 93 (2003), 4739–4745 | DOI

[10] Zarmi Y., Perturbed NLS and asymptotic integrability, nlin.SI/0511057

[11] Kundu A., “Landau–Lifshitz and higher-order nonlinear systems gauge generated from nonlinear Schrödinger-type equations”, J. Math. Phys., 25 (1984), 3433–3438 | DOI | MR

[12] Calogero F., Eckhaus W., “Nonlinear evolution equations, rescalings, model PDEs and their integrability. I”, Inverse Problems, 3 (1987), 229–262 | DOI | MR | Zbl

[13] Clarkson P. A., Cosgrove C. M., “Painlevé analysis of the nonlinear Schrödinger family of equations”, J. Phys. A: Math. Gen., 20 (1987), 2003–2024 | DOI | MR | Zbl

[14] Kakei S., Sasa N., Satsuma J., “Bilinearization of a generalized derivative nonlinear Schrödinger equation”, J. Phys. Soc. Japan, 64 (1995), 1519–1523 ; solv-int/9501005 | DOI | MR | Zbl

[15] Feng Z., Wang X., “Explicit exact solitary wave solutions for the Kundu equation and the derivative Schrödinger equation”, Phys. Scripta, 64 (2001), 7–14 | DOI | MR | Zbl

[16] Shen L. Y., Some algebraic properties of c-integrable nonlinear equation II-Eckhaus–Kundu equation and Thomas equation, Preprint, Univ. Sc. Tech. China, Hefei, China, 1989

[17] Shen L. Y., “Symmetries and constants of motion of integrable systems”, Symmetries Singularity Structures, Spinger, 1990, 27–41

[18] Conte R., Musette M., “The Painlevé methods”, Classical and Quantum Nonlinear Integrable Systems, IOP Publ., Bristol, 2003, 39–63

[19] Chen H. H., Lee Y. C., Liu C. S., “Integrability of nonlinear Hamiltonian systems by inverse scattering method”, Phys. Scripta, 20 (1979), 490–492 | DOI | MR | Zbl

[20] Gerdjikov V. S., Ivanov M. I., The quadratic bundle of general form and the nonlinear evolution equations: hierarchies of Hamiltonian structures, JINP Preprint E2-82-595, Dubna, 1982, 16 pp., ages | Zbl

[21] Mikhailov A. V., Shabat A. B., Yamilov R. I., “Extension of the module of invertible transformations. Classification of integrable systems”, Comm. Math. Phys., 115 (1988), 1–19 | DOI | MR

[22] Mikhailov A. V., Shabat A. B., Yamilov R. I., “A symmetric approach to the classification of nonlinear equations. Complete lists of integrable systems”, Uspekhi Mat. Nauk, 42:4(256) (1987), 3–53 | MR

[23] Ablowitz M., Segur H., Solitons and the inverse scattering transform, SIAM, Philadelphia, 1981, p. 54 | MR | Zbl

[24] Novikov S. P. (ed.), Theory of solitons, Nauka, Moscow, 1980, p. 76 (in Russian) | MR

[25] Kaup D. J., Newell A. C., “An exact solution for a derivative nonlinear Schrödinger equation”, J. Math. Phys., 19 (1978), 798–801 | DOI | MR | Zbl