The Torsion of Spinor Connections and Related Structures
Symmetry, integrability and geometry: methods and applications, Tome 2 (2006) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this text we introduce the torsion of spinor connections. In terms of the torsion we give conditions on a spinor connection to produce Killing vector fields. We relate the Bianchi type identities for the torsion of spinor connections with Jacobi identities for vector fields on supermanifolds. Furthermore, we discuss applications of this notion of torsion.
Keywords: spinor connection; torsion; Killing vector; supermanifold.
@article{SIGMA_2006_2_a76,
     author = {F. Klinker},
     title = {The {Torsion} of {Spinor} {Connections} and {Related} {Structures}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2006},
     volume = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a76/}
}
TY  - JOUR
AU  - F. Klinker
TI  - The Torsion of Spinor Connections and Related Structures
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2006
VL  - 2
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a76/
LA  - en
ID  - SIGMA_2006_2_a76
ER  - 
%0 Journal Article
%A F. Klinker
%T The Torsion of Spinor Connections and Related Structures
%J Symmetry, integrability and geometry: methods and applications
%D 2006
%V 2
%U http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a76/
%G en
%F SIGMA_2006_2_a76
F. Klinker. The Torsion of Spinor Connections and Related Structures. Symmetry, integrability and geometry: methods and applications, Tome 2 (2006). http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a76/

[1] Alekseevsky D. V., Cortés V., Devchand C., van Proeyen A., “Polyvector super-Poincaré algebras”, Comm. Math. Phys., 253 (2005), 385–422 ; hep-th/0311107 | DOI | MR | Zbl

[2] Alekseevsky D. V., Cortés V., Devchand C., Semmelmann U., “Killing spinors are Killing vector fields in Riemannian supergeometry”, J. Geom. Phys., 26 (1998), 37–50 ; dg-ga/9704002 | DOI | MR | Zbl

[3] Alekseevsky D. V., Cortés V., “Classification of $N$-extended Poincaré algebras and bilinear invariants of the spinor representation of $Spin(p,q)$”, Comm. Math. Phys., 183 (1997), 477–510 ; math.RT/9511215 | DOI | MR | Zbl

[4] Alishahiha M., Mohammad A. Ganjali M. A., Ghodsi A., Parvizi S., “On type IIA string theory on the PP-wave background 2003”, Nuclear Phys. B, 661 (2003), 174–190 ; hep-th/0207037 | MR | Zbl

[5] Alishahiha M., Kumar A., “D-brane solutions from new isometries of $pp$-waves”, Phys. Lett. B, 542 (2002), 130–136 ; hep-th/0205134 | DOI | MR | Zbl

[6] Atiyah M. F., Hitchin N. J., Singer I. M., “Self-duality in four-dimensional Riemannian geometry”, Proc. Roy. Soc. London Ser. A, 362:1711 (1978), 425–461 | DOI | MR | Zbl

[7] Bär C., “Real Killing spinors and holonomy”, Comm. Math. Phys., 154 (1993), 509–521 | DOI | MR | Zbl

[8] Baum H., “Complete Riemannian manifolds with imaginary Killing spinors”, Ann. Global Anal. Geom., 7 (1989), 205–226 | DOI | MR | Zbl

[9] Baum H., Friedrich T., Grunewald R., Kath I., Twistors and Killing spinors on Riemannian manifolds, Teubner-Texte zur Mathematik, 124, B. G. Teubner Verlagsgesellschaft, Stuttgart, 1991 | MR | Zbl

[10] Bergshoeff E., de Roo M., Janssen B., Ortín T., “The super $\rm D 9$-brane and its truncations 1999”, Nuclear Phys. B, 550 (1999), 289–302 ; hep-th/9901055 | DOI | MR | Zbl

[11] Bernhardt N., Nagy P.-A., On algebraic torsion forms and their spin holonomy algebra, math.DG/0608509 | MR

[12] Blau M., Supergravity solitons, Lecture available at http://www.unine.ch/phys/string/mblau/mblau.html

[13] Chevalley C., The algebraic theory of spinors and Clifford algebras: Collected works, Vol. 2, eds. P. Cartier, C. Chevalley, J.-P. Bourguignon, Springer-Verlag, Berlin, 1997 | MR | Zbl

[14] Cremmer E., Julia B., “The SO(8) supergravity”, Nuclear Phys. B, 159:1–2 (1979), 141–212 | DOI | MR

[15] Cremmer E., Julia B., Scherk J., “Supergravity theory in 11 dimensions”, Phys. Lett. B, 76 (1979), 409–412

[16] Friedrich T., Stefan Ivanov S., “Parallel spinors and connections with skew-symmetric torsion in string theory”, Asian J. Math., 6 (2002), 303–335 ; math.DG/0102142 | MR | Zbl

[17] Green M. B., Schwarz J. H., Witten E., Superstring theory, Vols. 1–2, 2nd ed., Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 1988 | MR

[18] Ivanov P., Ivanov S., “$\rm SU(3)$-instantons and $G_2$, $\rm Spin(7)$-heterotic string solitons”, Comm. Math. Phys., 259 (2005), 79–102 ; math.DG/0312094 | DOI | MR | Zbl

[19] Ivanov S., “Connections with torsion, parallel spinors and geometry of Spin(7) manifolds”, Math. Res. Lett., 11 (2004), 171–186 ; math.DG/0111216 | MR | Zbl

[20] Ivanov S., Papadopoulos G., “Vanishing theorems and string backgrounds”, Class. Quant. Grav., 18 (2001), 1089–1110 ; math.DG/0010038 | DOI | MR | Zbl

[21] Kath I., Killing spinors on pseudo-Riemannian manifolds, Habilitation Thesis, Humboldt University, Berlin, 2000

[22] Kath I., “Parallel pure spinors on pseudo-Riemannian manifolds”, Geometry and Topology of Submanifolds X, Proceedings of the Conference on Differential Geometry in Honor of Prof. S. S. Chern (1999, Beijing–Berlin), eds. W. H. Chen et al., World Scientific, Singapore, 2000, 87–103 | MR | Zbl

[23] Kennedy A. D., “Clifford algebras in $2\omega$ dimensions”, J. Math. Phys, 22 (1981), 1330–1337 | DOI | MR

[24] Klinker F., Supersymmetric Killing structures, PhD Thesis, University Leipzig, 2003 | Zbl

[25] Klinker F., “Supersymmetric Killing structures”, Comm. Math. Phys., 255 (2005), 419–467 | DOI | MR | Zbl

[26] Kostant B., “Graded manifolds, graded Lie theory, and prequantization”, Differential Geometrical Methods in Mathematical Physics (1975, University of Bonn), Lecture Notes in Math., 570, Springer, Berlin, 1977, 177–306 | MR

[27] Lawson H. B. Jr., Michelsohn M.-L., Spin geometry, Princeton Mathematical Series, 38, Princeton University Press, Princeton, NJ, 1989 | MR | Zbl

[28] Mangiarotti L., Sardanashvily G., Connections in classical and quantum field theory, World Scientific, Singapore, 2000 | MR | Zbl

[29] Moroianu A., “On the infinitesimal isometries of manifolds with Killing spinors”, J. Geom. Phys., 35 (2000), 63–74 | DOI | MR | Zbl

[30] Papadopoulos G., “Spin cohomology”, J. Geom. Phys., 56 (2006), 1893–1919 ; math.DG/0410494 | DOI | MR | Zbl

[31] Papadopoulos G., Tsimpis D., “The holonomy of the supercovariant connection and Killing spinors”, JHEP, 7 (2003), 018, 28 pp., ages ; hep-th/0306117 | DOI | MR

[32] van Proeyen A., Tools for supersymmetry, hep-th/9910030