@article{SIGMA_2006_2_a75,
author = {Robert V. Moody and Jiri Patera},
title = {Orthogonality within the {Families} of $C$-, $S$-, and $E${-Functions} of {Any} {Compact} {Semisimple} {Lie} {Group}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2006},
volume = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a75/}
}
TY - JOUR AU - Robert V. Moody AU - Jiri Patera TI - Orthogonality within the Families of $C$-, $S$-, and $E$-Functions of Any Compact Semisimple Lie Group JO - Symmetry, integrability and geometry: methods and applications PY - 2006 VL - 2 UR - http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a75/ LA - en ID - SIGMA_2006_2_a75 ER -
%0 Journal Article %A Robert V. Moody %A Jiri Patera %T Orthogonality within the Families of $C$-, $S$-, and $E$-Functions of Any Compact Semisimple Lie Group %J Symmetry, integrability and geometry: methods and applications %D 2006 %V 2 %U http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a75/ %G en %F SIGMA_2006_2_a75
Robert V. Moody; Jiri Patera. Orthogonality within the Families of $C$-, $S$-, and $E$-Functions of Any Compact Semisimple Lie Group. Symmetry, integrability and geometry: methods and applications, Tome 2 (2006). http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a75/
[1] Patera J., “Compact simple Lie groups and their $C$-, $S$-, and $E$-transforms”, SIGMA, 1 (2005), Paper 025, 6 pp., ages ; math-ph/0512029 | MR | Zbl
[2] Patera J., “Orbit functions of compact semisimple Lie groups as special functions”, Proceedings of Fifth International Conference “Symmetry in Nonlinear Mathematical Physics”, Part 3 (June 23–29, 2003, Kyiv), Proceedings of Institute of Mathematics, 50, eds. A. G. Nikitin, V. M. Boyko, R. O. Popovych and I. A. Yehorchenko, Kyiv, 2004, 1152–1160 | MR | Zbl
[3] Moody R. V., Patera J., “Computation of character decompositions of class functions on compact semisimple Lie groups”, Math. Comp., 48 (1987), 799–827 | DOI | MR | Zbl
[4] Moody R. V., Patera J., “Characters of elements of finite order in simple Lie groups”, SIAM J. Algebraic Discrete Methods, 5 (1984), 359–383 | DOI | MR | Zbl
[5] Moody R. V., Patera J., “Elements of finite order in Lie groups and their applications”, Proceedings XIII International Colloquium on Group Theoretical Methods in Physics (College Park, 1984), ed. W. Zachary, World Scientific Publishers, Singapore, 1984, 308–318 | MR
[6] Kass S., Moody R. V., Patera J., Slansky R., Affine Lie algebras, weight multiplicities, and branching rules, Vol. I and II, Los Alamos Series in Basic and Applied Sciences, University of California Press, Berkeley, 1990 | MR
[7] McKay W. G., Moody R. V., Patera J., “Tables of $E_8$ characters and decomposition of plethysms”, Lie Algebras and Related Topics, eds. D. J. Britten, F. W. Lemire and R. V. Moody, Amer. Math. Society, Providence, RI, 1985, 227–264 | MR
[8] Grimm S., Patera J., “Decomposition of tensor products of the fundamental representations of $E_8$”, Advances in Mathematical Sciences: CRM's 25 Years, CRM Proc. Lecture Notes, 11, ed. L. Vinet, Amer. Math. Soc., Providence, RI, 1997, 329–355 | MR | Zbl
[9] Patera J., Zaratsyan A., “Discrete and continuous cosine transform generalized to the Lie groups $SU(3)$ and $G(2)$”, J. Math. Phys., 46 (2005), 113506, 17 pp., ages | DOI | MR | Zbl
[10] Patera J., Zaratsyan A., “Discrete and continuous cosine transform generalized to the Lie groups $SU(2)\times SU(2)$ and $O(5)$”, J. Math. Phys., 46 (2005), 053514, 25 pp., ages | DOI | MR | Zbl
[11] Patera J., Zaratsyan A., “Discrete and continuous sine transform generalized to semisimple Lie groups of rank two”, J. Math. Phys., 47 (2006), 043512, 22 pp., ages | DOI | MR | Zbl
[12] Kashuba I., Patera J., “Discrete and continuous exponential transforms of simple Lie groups of rank two”, J. Phys. A: Math. Theor., 40 (2007), 1751–1774 | DOI | MR
[13] Klimyk A., Patera J., “Orbit functions”, SIGMA, 2 (2006), Paper 006, 60 pp., ages ; math-ph/0601037 | MR | Zbl
[14] Klimyk A., Patera J., “Antisymmetric orbit functions”, SIGMA, 3 (2007), 023, 83 pp., ages | MR | Zbl
[15] Atoyan A., Patera J., “Continuous extension of the discrete cosine transform, and its applications to data processing”, Group Theory and Numerical Analysis, CRM Proc. Lecture Notes, 39, Amer. Math. Soc., Providence, RI, 2005, 1–15 | MR | Zbl
[16] Atoyan A., Patera J., “Properties of continuous Fourier extension of the discrete cosine transform and its multidimensional generalization”, J. Math. Phys., 45 (2004), 2468–2491 ; math-ph/0309039 | DOI | MR | Zbl
[17] Atoyan A., Patera J., Sahakian V., Akhperjanian A., “Fourier transform method for imaging atmospheric Cherenkov telescopes”, Astroparticle Phys., 23 (2005), 79–95 ; astro-ph/0409388 | DOI
[18] Patera J., Zaratsyan A., Zhu H.-M., “New class of interpolation methods based on discretized Lie group transforms”, SPIE Electronic Imaging (2006, San Jose), 2006, 6064A-06, S1; http://spie.org/x24171.xml
[19] Germain M., Patera J., Zaratsyan A., “Multiresolution analysis of digital images using the continuous extension of discrete group transforms”, SPIE Electronic Imaging (2006, San Jose), 2006, 6065–03, S2; http://spie.org/x24171.xml
[20] Germain M., Patera J., Allard Y., “Cosine transform generalized to Lie groups $SU(2)\times SU(2)$, $O(5)$, and $SU(2)\times SU(2)\times SU(2)$: application to digital image processing”, Proc. SPIE, 6065 (2006), 387–395
[21] Humphreys J., Introduction to Lie algebras and representation theory, Springer, New York, 1972 | MR | Zbl
[22] Bremner M., Moody R. V., Patera J., Dominant weight multiplicities, Marcel Dekker, New York, 1990
[23] Moody R. V., Patera J., Group theory of multidimensional fast Fourier transforms, in preparation