@article{SIGMA_2006_2_a74,
author = {Maria A. Agrotis},
title = {Prolongation {Loop} {Algebras} for {a~Solitonic} {System} of {Equations}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2006},
volume = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a74/}
}
Maria A. Agrotis. Prolongation Loop Algebras for a Solitonic System of Equations. Symmetry, integrability and geometry: methods and applications, Tome 2 (2006). http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a74/
[1] Ablowitz M. J., Kaup D. J., Newell A. C., Segur H., “The inverse scattering transform-Fourier analysis for nonlinear problems”, Stud. Appl. Math., 53 (1974), 249–315 | MR | Zbl
[2] Zakharov V. E., Shabat A. B., “Integration of the nonlinear equations of mathematical physics by the method of the inverse scattering problem”, Funct. Anal. Appl., 13:3 (1979), 13–22 | MR | Zbl
[3] Flaschka H., “The Toda lattice. I. Existence of integrals”, Phys. Rev. B, 9 (1974), 1924–1925 | DOI | MR | Zbl
[4] Flaschka H., “On the Toda lattice. II. Inverse-scattering solution”, Progr. Theoret. Phys., 51 (1974), 703–716 | DOI | MR | Zbl
[5] Adler M., “On a trace functional for formal pseudo-differential operators and the symplectic structure of the Korteweg–de Vries type equations”, Invent. Math., 50 (1979), 219–48 | DOI | MR
[6] Adler M., van Moerbeke P., “Completely integrable systems, Euclidean Lie algebras, and curves”, Adv. Math., 38 (1980), 267–317 | DOI | MR | Zbl
[7] Kostant B., “The solution to a generalized Toda lattice and representation theory”, Adv. Math., 34 (1979), 195–338 | DOI | MR | Zbl
[8] Symes W. W., “Systems of Toda type, inverse spectral problems, and representation theory”, Invent. Math., 59 (1980), 13–51 | DOI | MR | Zbl
[9] Flaschka H., Newell A. C., Ratiu T., “Kac–Moody Lie algebras and soliton equations”, Phys. D, 9 (1983), 300–323 | DOI | MR | Zbl
[10] McCall S. L., Hahn E. L., “Self-induced transparency”, Phys. Rev., 183 (1969), 457–486 | DOI
[11] Lamb G. L., “Analytical description of utrashort optical pulse propagation in a resonant medium”, Rev. Modern Phys., 43 (1971), 99–124 | DOI | MR
[12] Eilbeck J. C., Gibbon J. D., Caudrey P. J., Bullough R. K., “Solitons in nonlinear optics. I. A more accurate description of the 2$\pi$ pulse in self-induced transparency”, J. Phys. A: Math. Gen., 6 (1973), 1337–1347 | DOI
[13] Caputo J., Maimistov A. I., “Unidirectional propagation of an ultra-short electromagnetic pulse in a resonant medium with high frequency stark shift”, Phys. Lett. A, 296 (2002), 34–42 ; nlin.SI/0107040 | DOI | MR | Zbl
[14] Elyutin S. O., “Dynamics of an extremely short pulse in a stark medium”, JETP, 101 (2004), 11–21 | DOI
[15] Qing-Chun J. I., “Darboux transformation and solitons for reduced Maxwell–Bloch equations”, Commun. Theor. Phys., 43 (2005), 983–986 | DOI | MR
[16] Sazonov S. V., Ustinov N. V., “Pulsed transparency of anisotropic media with stark level splitting”, Quantum Electronics, 35 (2005), 701–704 | DOI
[17] Sazonov S. V., Ustinov N. V., “Nonlinear acoustic transparency phenomena in strained paramagnetic crystals”, JETP, 102 (2006), 741–752 | DOI
[18] Bakhar N. V., Ustinov N. V., “Dynamics of two-component electromagnetic and acoustic extremely short pulses”, Proceedings of SPIE, 6181 (2006), 61810Q, 10 pp., ages ; nlin.SI/0512068 | DOI
[19] Glasgow S. A., Agrotis M. A., Ercolani N. M., “An integrable reduction of inhomogeneously broadended optical equations”, Phys. D, 212 (2005), 82–99 | DOI | MR | Zbl
[20] Agrotis M. A., “Hamiltonian flows for a reduced Maxwell–Bloch system with permanent dipole”, Phys. D, 183 (2003), 141–158 | DOI | MR | Zbl
[21] Bäcklund A. V., “Zur Theorie der Flachentransformationen”, Math. Ann., 19 (1881), 387–422 | DOI | MR
[22] Lamb G. L., Elements in soliton theory, Wiley-Interscience Pub., 1980 | MR | Zbl
[23] Lonngren K., Alwyn S. (ed.), Solitons in action, Academic Press, 1978 | MR | Zbl
[24] Newell A. C., Solitons in mathematics and physics, CBMS-NSF Regional Conference Series, 48, SIAM Press, 1985 | MR