Quasi-Exactly Solvable $N$-Body Spin Hamiltonians with Short-Range Interaction Potentials
Symmetry, integrability and geometry: methods and applications, Tome 2 (2006) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We review some recent results on quasi-exactly solvable spin models presenting near-neighbors interactions. These systems can be understood as cyclic generalizations of the usual Calogero–Sutherland models. A nontrivial modification of the exchange operator formalism is used to obtain several infinite families of eigenfunctions of these models in closed form.
Keywords: Calogero–Sutherland models; exchange operators; quasi-exact solvability.
@article{SIGMA_2006_2_a72,
     author = {A. Enciso and F. Finkel and A. Gonz\'alez-L\'opez and M. A. Rodr{\'\i}guez},
     title = {Quasi-Exactly {Solvable} $N${-Body} {Spin} {Hamiltonians} with {Short-Range} {Interaction} {Potentials}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2006},
     volume = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a72/}
}
TY  - JOUR
AU  - A. Enciso
AU  - F. Finkel
AU  - A. González-López
AU  - M. A. Rodríguez
TI  - Quasi-Exactly Solvable $N$-Body Spin Hamiltonians with Short-Range Interaction Potentials
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2006
VL  - 2
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a72/
LA  - en
ID  - SIGMA_2006_2_a72
ER  - 
%0 Journal Article
%A A. Enciso
%A F. Finkel
%A A. González-López
%A M. A. Rodríguez
%T Quasi-Exactly Solvable $N$-Body Spin Hamiltonians with Short-Range Interaction Potentials
%J Symmetry, integrability and geometry: methods and applications
%D 2006
%V 2
%U http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a72/
%G en
%F SIGMA_2006_2_a72
A. Enciso; F. Finkel; A. González-López; M. A. Rodríguez. Quasi-Exactly Solvable $N$-Body Spin Hamiltonians with Short-Range Interaction Potentials. Symmetry, integrability and geometry: methods and applications, Tome 2 (2006). http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a72/

[1] Auberson G., Jain S. R., Khare A., “A class of $N$-body problems with nearest- and next-to-nearest-neighbour interactions”, J. Phys. A: Math. Gen., 34 (2001), 695–724 ; cond-mat/0004012 | DOI | MR | Zbl

[2] Azuma H., Iso S., “Explicit relation of the quantum Hall effect and the Calogero–Sutherland model”, Phys. Lett. B, 331 (1994), 107–113 ; hep-th/9312001 | DOI

[3] Baker T. H., Forrester P. J., “The Calogero–Sutherland model and generalized classical polynomials”, Comm. Math. Phys., 188 (1997), 175–216 ; solv-int/9608004 | DOI | MR | Zbl

[4] Bogomolny E. B., Gerland U., Schmit C., “Models of intermediate statistics”, Phys. Rev. E, 59 (1999), R1315–R1318 | DOI

[5] Brink L., Turbiner A., Wyllard N., “Hidden algebras of the (super) Calogero and Sutherland models”, J. Math. Phys., 39 (1998), 1285–1315 ; hep-th/9705219 | DOI | MR | Zbl

[6] Calogero F., “Solution of the one-dimensional $N$-body problem with quadratic and/or inversely quadratic pair potentials”, J. Math. Phys., 12 (1971), 419–436 | DOI | MR

[7] Deguchi T., Ghosh P. K., “Spin chains from super-models”, J. Phys. Soc. Japan, 70 (2001), 3225–3237 ; hep-th/0012058 | DOI | MR | Zbl

[8] Desrosiers P., Lapointe L., Mathieu P., “Supersymmetric Calogero–Moser–Sutherland models and Jack superpolynomials”, Nucl. Phys. B, 606 (2001), 547–582 ; hep-th/0103178 | DOI | MR | Zbl

[9] D'Hoker E., Phong D. H., “Calogero–Moser systems in $\mathrm{SU}(N)$ Seiberg–Witten theory”, Nucl. Phys. B, 513 (1998), 405–444 ; hep-th/9709053 | DOI | MR

[10] Dunkl C. F., “Differential-difference operators associated to reflection groups”, Trans. Amer. Math. Soc., 311 (1989), 167–183 | DOI | MR | Zbl

[11] Dunkl C. F., “Orthogonal polynomials of types $A$ and $B$ and related Calogero models”, Comm. Math. Phys., 197 (1998), 451–487 ; q-alg/9710015 | DOI | MR | Zbl

[12] Enciso A., Finkel F., González-López A., Rodríguez M. A., “Haldane–Shastry spin chains of $BC_N$ type”, Nucl. Phys. B, 707 (2005), 553–576 ; hep-th/0406054 | DOI | MR | Zbl

[13] Enciso A., Finkel F., González-López A., Rodríguez M. A., “Solvable scalar and spin models with near-neighbors interactions”, Phys. Lett. B, 605 (2005), 214–222 ; hep-th/0407274 | DOI | MR

[14] Enciso A., Finkel F., González-López A., Rodríguez M. A., “Exchange operator formalism for $N$-body spin models with near-neighbors interactions”, J. Phys. A, Math. Theor., 40:8 (2007), 1857–1883 ; nlin.SI/0604073 | DOI | MR | Zbl

[15] Ezung M., Gurappa N., Khare A., Panigrahi P. K., “Quantum many-body systems with nearest and next-to-nearest neighbor long-range interactions”, Phys. Rev. B, 71:12 (2005), 125121, 8 pp., ages ; cond-mat/0007005 | DOI

[16] Finkel F., Gómez-Ullate D., González-López A., Rodríguez M. A., Zhdanov R., “$A_N$-type Dunkl operators and new spin Calogero–Sutherland models”, Comm. Math. Phys., 221 (2001), 477–497 ; hep-th/0102039 | DOI | MR | Zbl

[17] Finkel F., Gómez-Ullate D., González-López A., Rodríguez M. A., Zhdanov R., “New spin Calogero–Sutherland models related to $B_N$-type Dunkl operators”, Nucl. Phys. B, 613 (2001), 472–496 ; hep-th/0103190 | DOI | MR | Zbl

[18] Gorsky A., Nekrasov N., “Hamiltonian systems of Calogero type, and two dimensional Yang–Mills theory”, Nucl. Phys. B, 414 (1994), 213–238 ; hep-th/9304047 | DOI | MR | Zbl

[19] Haldane F. D. M., “$\mathrm O(3)$ nonlinear $\sigma$ model and the topological distinction between integer- and half-integer-spin antiferromagnets in two dimensions”, Phys. Rev. Lett., 60 (1988), 635–638 | DOI | MR

[20] Heckman G. J., “Dunkl operators”, Astérisque, 245, 1997, 223–246 | MR | Zbl

[21] Hitchin N., “Stable bundles and integrable systems”, Duke Math. J., 54 (1987), 91–114 | DOI | MR | Zbl

[22] Jain S. R., Khare A., “An exactly solvable many-body problem in one dimension and the short-range Dyson model”, Phys. Lett. A, 262 (1999), 35–39 ; cond-mat/9904121 | DOI | MR | Zbl

[23] Kasman A., “Bispectral KP solutions and linearization of Calogero–Moser particle systems”, Comm. Math. Phys., 172 (1995), 427–448 ; hep-th/9412124 | DOI | MR | Zbl

[24] Kirillov A. A. Jr., “Lectures on affine Hecke algebras and Macdonald's conjectures”, Bull. Amer. Math. Soc. (N.S.), 34 (1997), 251–292 ; math.QA/9501219 | DOI | MR | Zbl

[25] Moser J., “Three integrable Hamiltonian systems connected to isospectral deformations”, Adv. Math., 16 (1975), 197–220 | DOI | MR | Zbl

[26] Olshanetsky M. A., Perelomov A. M., “Quantum integrable systems related to Lie algebras”, Phys. Rep., 94 (1983), 313–403 | DOI | MR

[27] Perelomov A. M., “Remark on the completeness of the coherent state system”, Theor. Math. Phys., 6:2 (1971), 213–224 | DOI | MR

[28] Polychronakos A. P., “Nonrelativistic bosonization and fractional statistics”, Nucl. Phys. B, 324 (1989), 597–622 | DOI | MR

[29] Polychronakos A. P., “Exchange operator formalism for integrable systems of particles”, Phys. Rev. Lett., 69 (1992), 703–706 ; hep-th/9202057 | DOI | MR

[30] Polychronakos A. P., “Lattice integrable systems of Haldane–Shastry type”, Phys. Rev. Lett., 70 (1993), 2329–2332 ; hep-th/9210109 | DOI

[31] Polychronakos A. P., “Exact spectrum of an $\mathrm{SU}(N)$ spin chain with inverse-square exchange”, Nucl. Phys. B, 419 (1994), 553–566 | DOI | MR | Zbl

[32] Polychronakos A. P., “Waves and solitons in the continuum limit of the Calogero–Sutherland model, 1995”, Phys. Rev. Lett., 74 (1995), 5153–5156 ; hep-th/9411054 | DOI | MR

[33] Rühl W., Turbiner A. V., “Exact solvability of the Calogero and Sutherland models”, Mod. Phys. Lett. A, 10 (1995), 2213–2221 ; hep-th/9506105 | DOI | MR | Zbl

[34] Shastry B. S., “Exact solution of an $S=1/2$ Heisemberg antiferromagnetic chain with long-ranged interactions”, Phys. Rev. Lett., 60 (1988), 639–642 | DOI

[35] Shifman M. A., Turbiner A. V., “Quantal problems with partial algebraization of the spectrum”, Comm. Math. Phys., 126 (1989), 347–365 | DOI | MR | Zbl

[36] Shukla P., “Non-hermitian random matrices and the Calogero–Sutherland model”, Phys. Rev. Lett., 87:19 (2001), 194102, 4 pp., ages | DOI

[37] Sutherland B., “Exact results for a quantum many-body problem in one dimension, I, II”, Phys. Rev. A, 4 (1971), 2019–2021 ; 5 (1972), 1372–1376 | DOI | DOI

[38] Turbiner A. V., “Quasi-exactly solvable problems and $\mathrm{sl}(2)$ algebra”, Comm. Math. Phys., 118 (1988), 467–474 | DOI | MR | Zbl

[39] Turbiner A. V., “Lie algebras and polynomials in one variable”, J. Phys. A: Math. Gen., 25 (1992), L1087–L1093 | DOI | MR | Zbl

[40] Turbiner A. V., “Lie algebras and linear operators with invariant subspaces”, Lie Algebras, Cohomologies and New Findings in Quantum Mechanics, Contemporary Mathematics, 160, eds. N. Kamran and P. J. Olver, AMS, Providence, 1994, 263–310 ; funct-an/9301001 | MR | Zbl

[41] Weyl H., The classical groups, Princeton University Press, Princeton, 1997 | MR | Zbl

[42] Yamamoto T., “Multicomponent Calogero model of $B_N$-type confined in a harmonic potential”, Phys. Lett. A, 208 (1995), 293–302 ; cond-mat/9508012 | DOI | MR | Zbl