Generalized Ellipsoidal and Sphero-Conal Harmonics
Symmetry, integrability and geometry: methods and applications, Tome 2 (2006) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Classical ellipsoidal and sphero-conal harmonics are polynomial solutions of the Laplace equation that can be expressed in terms of Lamé polynomials. Generalized ellipsoidal and sphero-conal harmonics are polynomial solutions of the more general Dunkl equation that can be expressed in terms of Stieltjes polynomials. Niven's formula connecting ellipsoidal and sphero-conal harmonics is generalized. Moreover, generalized ellipsoidal harmonics are applied to solve the Dirichlet problem for Dunkl's equation on ellipsoids.
Keywords: generalized ellipsoidal harmonic; Stieltjes polynomials; Dunkl equation; Niven formula.
@article{SIGMA_2006_2_a70,
     author = {Hans Volkmer},
     title = {Generalized {Ellipsoidal} and {Sphero-Conal} {Harmonics}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2006},
     volume = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a70/}
}
TY  - JOUR
AU  - Hans Volkmer
TI  - Generalized Ellipsoidal and Sphero-Conal Harmonics
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2006
VL  - 2
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a70/
LA  - en
ID  - SIGMA_2006_2_a70
ER  - 
%0 Journal Article
%A Hans Volkmer
%T Generalized Ellipsoidal and Sphero-Conal Harmonics
%J Symmetry, integrability and geometry: methods and applications
%D 2006
%V 2
%U http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a70/
%G en
%F SIGMA_2006_2_a70
Hans Volkmer. Generalized Ellipsoidal and Sphero-Conal Harmonics. Symmetry, integrability and geometry: methods and applications, Tome 2 (2006). http://geodesic.mathdoc.fr/item/SIGMA_2006_2_a70/

[1] Arscott F. M., Periodic differential equations, Pergamon Press, MacMillan Company, New York, 1964 | MR | Zbl

[2] Dunkl C. F., “Reflection groups and orthogonal polynomials on the sphere”, Math. Z., 197 (1988), 33–60 | DOI | MR | Zbl

[3] Dunkl C. F., “Computing with differential-difference operators”, J. Symbolic Comput., 28 (1999), 819–826 | DOI | MR | Zbl

[4] Dunkl C. F., Xu Y., Orthogonal polynomials of several variables, Cambridge University Press, Cambridge, 2001 | MR | Zbl

[5] Heine E., Handbuch der Kugelfunktionen, Vol. 1, G. Reimer Verlag, Berlin, 1878 | Zbl

[6] Hobson E. W., The theory of spherical and ellipsoidal harmonics, Cambridge, 1931

[7] Hochstadt H., The functions of mathematical physics, Wiley-Interscience, New York, 1971 | MR | Zbl

[8] Kalnins E. G., Miller W. Jr., Tratnik M. V., “Families of orthogonal and biorthogonal polynomials on the $n$-sphere”, SIAM J. Math. Anal., 22 (1991), 272–294 | DOI | MR | Zbl

[9] Kalnins E. G., Miller W. Jr., “Hypergeometric expansions of Heun polynomials”, SIAM J. Math. Anal., 22 (1991), 1450–1459 | DOI | MR | Zbl

[10] Kalnins E. G., Miller W. Jr., “Jacobi elliptic coordinates, functions of Heun and Lamé type and the Niven transform”, Regul. Chaotic Dyn., 10 (2005), 487–508 | DOI | MR | Zbl

[11] Kellog O. D., “On bounded polynomials in several variables”, Math. Z., 27 (1927), 55–64 | DOI | MR | Zbl

[12] Komarov I. V., Kuznetsov V. B., “Quantum Euler–Manakov top on the 3-sphere $S_3$”, J. Phys. A: Math. Gen., 24 (1991), L737–L742 | DOI | MR | Zbl

[13] Kuznetsov V. B., “Equivalence of two graphical calculi”, J. Phys. A: Math. Gen., 25 (1992), 6005–6026 | DOI | MR | Zbl

[14] Lokemba Liamba J. P., “Expansions in generalized spherical harmonics in $\mathbf R^{k+1}$”, Ann. Sci. Math. Québec, 26 (2002), 79–93 | MR | Zbl

[15] Müller C., Analysis of spherical symmetries in euclidian spaces, Applied Mathematical Sciences, 129, Springer-Verlag, New York, 1998 | MR

[16] Schmidt D., Wolf G., “A method of generating integral relations by the simultaneous separability of generalized Schrödinger equations”, SIAM J. Math. Anal., 10 (1979), 823–838 | DOI | MR | Zbl

[17] Stieltjes T. J., “Sur certains polynômes qui vérifient une équation différentielle linéaire du second ordre et sur la théorie des fonctions de Lamé”, Acta Math., 5 (1885), 321–326 | DOI | MR

[18] Szegő G., Orthogonal polynomials, Fourth edition, American Mathematical Society, Providence, 1975 | MR

[19] Volkmer H., “Expansion in products of Heine–Stieltjes polynomials”, Constr. Approx., 15 (1999), 467–480 | DOI | MR | Zbl

[20] Whittaker E. T., Watson G. N., A course in modern analysis, Cambridge Univ. Press, Cambridge, 1927

[21] Xu Y., “Orthogonal polynomials for a family of product weight functions on the spheres”, Canad. J. Math., 49 (1997), 175–192 | MR | Zbl

[22] Xu Y., “Harmonic polynomials associated with reflection groups”, Canad. Math. Bull., 43 (2000), 496–507 | MR | Zbl